
MQ-Sign: A New Post-Quantum Signature
Scheme based on Multivariate Quadratic

Equations: Shorter and Faster ?

Kyung-Ah Shim1 and Hyeokdong Kwon1

National Institute for Mathematical Sciences
kashim,hyeokdong@nims.re.kr

Abstract. We present the digital signature scheme, MQ-Sign, based on
UOV whose security relies on the hardness of solving large systems of
multivariate quadratic equations. MQ-Sign supports two types of signa-
ture schemes, MQ-Sign-RR and MQ-Sign-LR, depending on the selection
of Vinegar∗Vinegar quadratic terms. MQ-Sign-LR uses the linear com-
binations of v lines and Vinegar variables as Vinegar∗Vinegar quadratic
terms which provides a compact representation as a circulant matrix-
vector product. This structure reduces the secret key size significantly
and improve the performance of key generation and signing. For faster
signing performance, it also uses the block inversion method based on
half-sized block matrices and Schur complement. Compared to MQ-Sign-
RR, the secret key of MQ-Sign-LR is reduced by about 42% and perfor-
mance of key generation and signing of MQ-Sign-LR is improved by 30%
It is designed to enable dramatically faster online signing by precomput-
ing most of heavy part for solving the linear system. Finally, MQ-Sign
with precomputation is 4.6x to 6.3x faster than the scheme without pre-
computation at the three security levels.

Keywords: Block matrix inversion · Multivariate quadratic equation ·
UOV.

1 Introduction

Multivariate quadratic equations(MQ)-based signature schemes are mainly based
on the hardness of solving large systems of multivariate quadratic equations,
called MQ-problem. In MQ-schemes, a trapdoor is hidden in secret affine layers
using the affine-substitute-affine (ASA) structure. Security of this ASA structure
relies on the hardness of variants of Extended Isomorphism of Polynomials (EIP)
problem [23]. Unbalanced Oil and Vinegar (UOV) signature scheme is one of the
oldest and best studied cryptosystems. Rainbow, a variant of UOV, is based on
the multiple-layered structure to reduce the key size and improve performance
[15]. These MQ-signature schemes are very simple and fast, and has small sig-
natures. Since they require simple operations such as matrix-vector products
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and solving linear systems over small finite fields, they can be efficiently imple-
mented on resource-constrained devices [9, 11, 12]. Recent advanced attacks on
Rainbow [38, 2, 3, 33, 6, 7] made UOV a better choice both in terms of security
and efficiency. Although NIST recommended three algorithms, Dilithium, Falcon
and SPHINCS+ as digital signature schemes in PQC Standardization. To diver-
sify the signature portfolio, NIST received proposals for signature schemes with
short signatures and fast verification that are not based on structured lattices.
The MQ-signature scheme such as UOV is emerging as a strong candidate. In
this document, we propose an efficient MQ-signature scheme, MQ-Sign, based
on UOV with shorter secret key size and faster performance.

1.1 Design rationale and Advantages

Our scheme is designed with the following design rationale.

A New MQ-Signature Scheme based on UOV. MQ-Sign is based on UOV.
UOV has withstood rigorous security analysis for a long time since its invention
1999. It is older, simpler, and has a strictly smaller attack surface in comparison
to Rainbow. MQ-Sign maintains the structure of UOV and provides shorter
secret key size and faster performance. It provides MQ-Sign-RR and MQ-Sign-
LR as follows:

– MQ-Sign-RR uses random Vinegar∗Vinegar indexed quadratic terms and
random Vinegar∗Oil quadratic terms as the central map F and the equivalent

key of the form T =

(
I T
0 I

)
as the linear map.

– MQ-Sign-LR uses the linear combinations of v lines and Vinegar variables
as Vinegar∗Vinegar quadratic terms in the central map F . It provides a
compact representation of Vinegar∗Vinegar quadratic terms as a circulant
matrix-vector product. This structure reduces the secret key size significantly
and improve the performance of key generation and signing.

Security Guarantee against Potential Attacks. In order to prevent poten-
tial attacks, we use a binding technique so that a signature is identified with a
unique public key and message.

– For given two public keys P and P ′ such that P ′ = P ◦ T ′, if σ = (z, r) is a
signature on a message M under the public key P then one who knows T ′

can generate a valid signature σ′ = (z′, r) on the same message M under the
public key P ′ by computing z′ = (T′)−1(z).

– To prevent this kind of attacks, one needs to bind a message being signed
with the public key, i.e. H(M ||r||H(P)). So, we use H(M ||r||H(P)) in the
signing and verification algorithms.

Small Signatures and Shorter Secret Keys. Like other MQ-schemes, the
signatures of MQ-Sign are very small. More precisely, the signature sizes of MQ-
Sign- require 150 bytes, 216 bytes and 276 bytes at security levels 1, 3, and
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5, respectively. Compared to UOV, the public key size of MQ-Sign is slightly
reduced. The compact representation of Vinegar∗ Vinegar quadratic terms in the
secret key of MQ-Sign-LR reduces the secret key size by about 37% compared
to MQ-Sign-RR.

Fast Performance and Easy to Implement Like many other MQ-signature
schemes, MQ-Sign is very simple and is easy to implement. Simple operations
such as matrix-vector products, solving linear systems for small finite fields are
required, and fast signing and verification are possible. In Rainbow with two
layers, the number of equations is divided into two which reduces the size of the
matrix being inverted. Since MQ-Sign has a single layer, it requires relatively
large size of the matrix in Gaussian elimination which makes signing inefficient.

– In order to resolve this inefficiency, we use the block inversion method pro-
posed in [32] that exploits the inversions of half-sized matrices and Schur
complement. So, MQ-Sign provides faster signing performance.

– Due to the simple generation of Vinegar∗ Vinegar quadratic terms based
on lines and the computation of a circulant matrix-vector product for the
Vinegar value substitution, the performance of key generation and signing of
MQ-Sign-LR is improved by about 30% to 50% compared to MQ-Sign-RR.

– MQ-Sign is designed to enable dramatically faster online signing by precom-
puting most of heavy part for solving the linear system. Finally, MQ-Sign
with precomputation is 4.6x to 6.3x faster than the scheme without precom-
putation at the three security levels.

Protection Side-Channel Attacks. All key dependent operations in our
scheme are performed in a constant-time manner. MQ-Sign can prevent the
side-channel attack in [22] due to its single layer structure.

1.2 Limitations

Large Key Sizes. Despite the short signature size and fast performance, the
MQ-schemes suffer from relatively large public/secret key sizes. Even though the
secret key size of MQ-Sign-LR is much smaller than that of UOV, it remains
larger than the size of some other post-quantum signature schemes. However, due
to increasing memory capabilities even of medium devices (e.g. smartphones),
we do not think that this will be a major problem.
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2 Our Signature Scheme: MQ-Sign

2.1 Basic Operations

Main Parameters.

– Fq: a finite field of q elements

– m: the number of polynomials in the public key

– v: the number of Vinegar variables

– o: the number of Oil variables, m = o

– n: the number of variables in the public key, n = o+ v.

Let V = {1, · · · , v} and O = {v + 1, · · · , v + o} be sets of integers such that
|V | = v, |O| = o, and n = v + o. We first describe the structure of UOV [20].
A central map F : Fnq → Foq of UOV, F = (F (1), · · · ,F (o)), is o multivariate
quadratic equations with n variables x1, · · · , xn defined by

F (k)(x) =
∑

i∈O,j∈V
α
(k)
ij xixj +

∑
i,j∈V,i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k). (1)

Each polynomial F (k) has no quadratic terms indexed by Oil∗Oil, i.e. the quadratic
terms xixj for i, j ∈ O. This is called the missing Oil∗Oil structure that allows to
invert the quadratic systems in signing. An invertible affine map T : Fnq → Fnq is
required to destroy the missing Oil∗Oil structure of F . A public key is P = F ◦T
that seems to be hardly distinguishable from a random quadratic system, thus
be hard to invert, where (F , T ) is a secret key.

Each central quadratic polynomial F (k) is written as

F (k) = F (k)
V + F (k)

OV + F (k)
L + F (k)

C ,

where F (k)
V and F (k)

OV are the part of Vinegar×Vinegar quadratic terms and the

part of Vinegar×Oil quadratic terms, respectively, and F (k)
L and F (k)

C are the
part of linear terms and constant terms, respectively, for k = 1, · · · , o. In UOV,
the central polynomial (1) can be written by

F (k) = F (k)
V,R + F (k)

OV,R + F (k)
L + F (k)

C .

2.2 Central Maps and Linear Maps

MQ-Sign provides MQ-Sign-RR and MQ-Sign-LR depending on the selection of
the Vinegar8Vinegar quadratic terms.

[Selection of F (k)
V .]
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– RandomF (k)
V . The the Vinegar×Vinegar quadratic part, F (k)

V , is chosen as

F (k)
V = F (k)

V,R =
∑

i∈O,j∈V
α
(k)
ij xixj ,

where α
(k)
ij is selected randomly from Fq so that the symmetric matrix of the

quadratic part of F (k)
V has full rank for k = 1, · · · , o.

– F (k)
V using v Lines. For the Vinegar×Vinegar quadratic part, F (k)

V , is cho-
sen as

F (1)
V = F (1)

V,LR = x1 · L1 + x2L2 + · · ·+ xvLv,

F (2)
V = F (2)

V,LR = xv · L1 + x1L2 + · · ·+ xv−1Lv,

· · · ,

F (o)
V = xv−o1+2 · L1 + xv−o1+3L2 + · · ·+ xv−o1+1Lv,

where Li =
∑v
j=1 δjxj (1 ≤ i ≤ v) is a line in variables (x1, · · · , xv), ran-

domly chosen in F∗q so that the symmetric matrix of the quadratic part of

F (k)
V,LR has full rank for k = 1, · · · , o. Then, the system of o polynomials with

v variables can be represented as
x1 x2 · · · xv
xv x1 · · · xv−1
· · · · · · · · · · · ·

xv−o1+2 xv−o1+3 · · · xv−o1+1

 ·

L1

L2

· · ·
Lv

 .

The substitution of the random Vinegar values into the Vinegar×Vinegar
quadratic terms can be computed as the following circulant matrix-vector
product

F (1)
V,LR(sV )

F (2)
V,LR(sV )

· · ·
F (o)
V,LR(sV )

 =


x1 x2 · · · xv
xv x1 · · · xv−1
· · · · · · · · · · · ·

xv−o1+2 xv−o1+3 · · · xv−o1+1

 ·

L1(sV )
L2(sV )
· · ·

Lv(sV )

 ,

where sV = (s0, · · · , sv) ∈ Fvq is a vector of random Vinegar values. This

construction reduces the size of the quadratic part F (k)
V from (v × v)/2 · o

field elements in random F (k)
V to v · (v + o) = v · n field elements.

[Selection of F (k)
OV .] For the Vinegar×Oil quadratic part, F (k)

OV , is chosen as

F (k)
OV = F (k)

OV,R =
∑

i,j∈V,i≤j

β
(k)
ij xixj ,

where β
(k)
ij is selected randomly from Fq so that the symmetric matrix of the

quadratic part of F (k)
OV has full rank for k = 1, · · · , o.
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[Selection of Linear Maps.] The affine map is chosen as a linear map of the

form TE =

(
I T
0 I

)
.

[MQ-Sign-RR and MQ-Sign-LR.] According to the selections of F (k)
V and

F (k)
OV (k = 1, · · · , o), MQ-Sign-RR and MQ-Sign-LR are determined by the fol-

lowing two combinations for central maps and linear maps:

– Random F (k)
V , random F (k)

OV , and the linear map TE for MQ-Sign-RR:

F (k)
RR = F (k)

V,R + F (k)
OV,R.

– Line-based F (k)
V,LR, random F (k)

OV,R, and the linear map TE for MQ-Sign-LR:

F (k)
LR = F (k)

V,LR + F (k)
OV,R.

MQ-Sign has neither linear terms and constant terms.

MQ-Sign uses the equivalent key of the form TE . The public key P =
(P(1), · · · ,P(m)) is computed by evaluating P(k) = T TE · F (k) · TE from F =
(F (1), · · · ,F (m)) and bringing the resulting matrices to upper triangular form.
Since the blocks F (k) are already upper triangular matrices, this operation has
no impact on them. From(

I 0
T I

)(
F (k)

1 F (k)
2

0 0

)(
I T
0 I

)

=

(
F (k)

1 F (k)
1 T + F (k)

2

TTF (k)
1 TTF (k)

1 T + TTF (k)
2

)
we deduce

P(k) =

(
P(k)
1 P(k)

2

0 P(k)
3

)
=

(
F (k)

1 (F (k)
1 + F (k)

1 )TT + F (k)
2

0 Upper(TTF (k)
1 T + TTF (k)

2 )

)
.

2.3 Bind Signatures with the Public Key

In order to prevent potential attacks, we use a binding technique so that a
signature is identified with a unique public key and a message. Assume that
there are two public keys P and P ′ such that P ′ = P ◦ T ′, where

P = F ◦ T, P ′ = (F ◦ T ) ◦ T ′.

If σ = (z, r) is a signature on a message M under the public key P then one
who knows T ′ can generate a valid signature σ′ = (z′, r) on the same message M
under the public key P ′ by computing z′ = (T ′)−1(z). This is similar to rogue-
key attacks on aggregate or multisignature schemes in the multiuser setting [8,
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10]. For a given signature on a message M under P, another signature can
be produced on the same message under P ′ related to P. It is different from
malleable signature scheme: if, on input a message and a signature under a public
key, it is possible to efficiently compute a signature on a related message under
the same public key. To prevent this type of attacks, it needs to bind a message
being signed with the hash value of the public key, i.e. H(M ||r||H(P)). So, we
use H(M ||r||H(P)) in the signing and verification algorithms. Consequently, a
given signature can be identified with a unique public key and a message.

2.4 Solving Linear Systems

A main idea to invert a system of quadratic equations in the MQ-schemes is to
convert the quadratic system to a linear system by substituting random Vinegar
values into the Vinegar variables of the central polynomials. There are two major
computations in signing.

– Substitution of Vinegar Values into the Central Map. Calculations
for substituting the random Vinegar values into the central map are required.
Since there are a large number of quadratic terms with Vinegar×Vinegar
indexes and Vinegar×Oil indexes, the computations are heavy.

– Solving Linear System. After the Vinegar value substitution, Gaussian
elimination is used to find a solution of the linear system, whose complexity
is O(o3) for the number of equations o.

These computations are main bottlenecks for signing cost. Unlike Rainbow with
two layers, UOV with a single layer is required to find a solution of relatively
large linear system: UOV requires the inversion of an o×o matrix, where o is up
to twice as large as oi (i = 1, 2) in Rainbow, where o1 and o2 are the numbers
of equations in the first and second layers of Rainbow, respectively. In order
to resolve this inefficiency, we use the block inversion method that exploits the
inversions of half-sized matrices [32].

Block Matrix Inversion Method. In signing, UOV and Rainbow use Gaus-
sian elimination to solve the linear system. In Rainbow implementation [29], the
signing algorithm computes R−1 by using Gaussian elimination, where R is the
coefficient matrix of the linear system obtained from substituting the Vinegar
values. We use a fast method, the block matrix inversion (BMI) method pro-
posed in [32] that computes R−1 · α directly, without finding R−1, by using the
inversions of half-sized matrices.

– BMI Method. A nonsingular square matrix R of 2 × 2 blocks is represented
by the LDU decomposition of block matrices based on the Schur complement
as

R =

(
A B
C D

)
=

(
I O

CA−1 I

)(
A O
0 D − CA−1B

)(
I A−1B
0 I

)
= L·DSc·U,
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where ASc = [D − CA−1B] is the Schur complement of A. Thus, R−1 · ξ
can be expressed by A−1 and the inverse of the Schur complement of A,
[D − CA−1B]−1, if they exist,

R−1·

 ξ1
· · ·
ξo

 =

(
I −A−1B
0 I

)(
A−1 O

0 [D − CA−1B]−1

)(
I 0

−CA−1 I

) ξ1
· · ·
ξo

 .

After computing A−1, CA−1, C(A−1B), A−1Sc = [D−CA−1B]−1 and A−1B
via two inversions and four matrix multiplications of o/2×o/2 block matrices,
all remaining computations are made by four block matrix-vector products
as:

CA−1 · (ξ1, · · · , ξo/2)T + (ξo/2+1, · · · , ξo)T = (αo/2+1, · · · , αo)T,

A−1 · (ξ1, · · · , ξo/2)T = (β1, · · · , βo/2)T,

A−1Sc · (αo/2+1, · · · , αo)T = (βo/2+1, · · · , βo)T,

(β1, · · · , βo/2)T + (−A−1B) · (βo/2+1, · · · , βo)T = (γ1, · · · , γo/2)T.

Finally, sO = (γ1, · · · , γo/2, βo/2+1, · · · , βo) is the solution of R · x = ξ, i.e.

R−1 · ξ = sTO.

– Repeated BMI. The BMI method can be applied to these two half-sized
matrices which results in four inversions of o/4 × o/4 matrices and extra
operations. Like this, for o = 2l · o′, it can be applied l times, where the
number of these iterations of the BMI is defined as a depth. However, l
iterations will not always be effective, because 2l inversions of o/2l × o/2l
matrices are required.

According to the results using the BMI method in [32], the larger the size
of a matrix being inverted, the greater the performance improvement and the
higher the security level, the greater the effect of the optimizations. We use the
BMI method with depth 1 to solve the linear system in signing.

2.5 Precomputation

MQ-Sign is designed to allow most heavy part for solving the linear system in
signing to be precomputed in offline.

Precomputation. Signing can be divided into two parts: one is independent
of messages being signed, the other depends on the messages. MQ-Sign has
significantly large message independent operations in signing. Thus, the offline
precomputation can dramatically improve signing.

[Offline Signing]
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– Choose random Vinegar values sV = (s1, · · · , sv) ∈ Fvq .
– Substitute sV into o the secret polynomials F (k) (1 ≤ k ≤ o), and get a o×o

coefficient matrix R =

(
A B
C D

)
and a constant vector cV = (c1, · · · , co) =

(F (1)
V (sV ), · · · ,F (o)

V (sV )).
– Compute A−1, CA−1, CA−1B, A−1Sc and A−1B. If A or ASc is not invertible

then go back to the first step.
– Choose a random salt r.
– Store the precomputed values < sV , cV, A

−1, CA−1, A−1sc , A
−1B, r >.

[Online Signing]

– Compute h = H(M ||r||ph) (H(M ||r) in LR) for a message M .
– Compute R−1 · ξ = sO by computing four block matrix-vector products

from the precomputed values in the BMI method, where ξ = h − cV =
(h1 − c1, · · · , ho − co) and h = (h1, · · · , ho).

– Compute z =

(
sTV + T · sTO

sO

)
.

– Output σ = (z, r) as a signature on M .

MQ-Sign with precomputation is at most 6x faster than the original version
without precomputation at the three security levels. According to the security
analysis in [32], if some precomputed values together with signatures generated
by them are exposed or reused then the secret key of the scheme is completely
recovered. Thus, the precomputed values (actually, sV ) should be stored securely
and should not be reused in signing.

2.6 Specifications of MQ-Sign

� MQ-Sign

– KeyGen(1λ). For a security parameter λ, do the followings:

• Choose F (k) (k = 1, · · · , o) and T as follows:

∗ MQ-Sign-RR: F (k)
RR = F (k)

V,R + F (k)
OV,R and TE .

∗ MQ-Sign-LR: F (k)
LR = F (k)

V,LR + F (k)
OV,R and TE .

• Output a public key as PK and a secret key as SK.

∗ MQ-Sign-RR: PK =< P, ph > and SK =< F , T, ph >, where P =
F ◦ T and ph = H(P).
∗ MQ-Sign-LR: PK =< P > and SK =< F , T >.

– Sign(SK, λ,M). Given a message M and a collision-resistant hash function
H : {0, 1}∗ → Foq, compute a = F−1(ξ), i.e. F(a) = ξ as follow:

• [Vinegar Value Substitution.] Select Vinegar values sV = (s1, · · · , sv) ∈
Fvq at random and do the followings:
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∗ Substitute sV into o central polynomials F (k) (1 ≤ k ≤ o) and get
o polynomials of unknowns xv+1, · · · , xv+o with an o × o coefficient

matrix R =

(
A B
C D

)
.

∗ Compute A−1, CA−1, CA−1B, A−1sc , A−1B.
∗ If A or Asc is not invertible, then choose another vector of Vinegar

values s′V and try again.

• [Solving Linear System.] Choose a l-bit random salt r,

∗ MQ-Sign-RR: compute h = H(M ||r||ph) ∈ Foq.
∗ MQ-Sign-LR: compute h = H(M ||r) ∈ Foq.

Find a solution sO = (sv+1, · · · , sv+o) of the linear system R · x = ξ
by using the block matrices of the BMI method, where ξ = h− cV and

cV = (F (1)
V (sV ), · · · ,F (o)

V (sV )).

• [Output.] Compute z =

(
sTV + T · sTO

sO

)
. Output σ = (z, r) as a signa-

ture on M .

– Verify(PK,M, σ). Given a signature σ = (z, r) on a message M and the
public key P,

• MQ-Sign-RR: check the equality P(z) = H(M ||r||ph).

• MQ-Sign-LR: check the equality P(z) = H(M ||r).

If the equality holds, output valid.

The KeyGen, Sign, and Verify algorithms of MQ-Sign are presented in Algo-
rithm 1, 2, and 3, respectively.

Algorithm 1 KeyGen(λ)

Require: parameters (q, v, o), length of salt l.
Ensure: key pair (sk, pk).
1: MT ← Matrix(q, v × o)
2: T ←MT

3: T =

(
I T
0 I

)
← Equi(T )

4: F ← MQmap(q, v, o)
5: P ← F ◦ T
6: ph← H(P)
7: sk ← (F , T, ph) (sk ← (F , T ) in LR)
8: pk ← (P, ph) (pk ← P in LR)
9: Return (sk, pk)
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Algorithm 2 Sign(sk,M)

Require: message M , secret key (F , T ), length of the salt l.
Ensure: signature σ = (z, r) ∈ Fn

q × {0, 1}l.
1: repeat
2: sV = (s1, ..., sv)←R Fq

3: R =

(
A B
C D

)
← Coeffi(F (1)(sV ), · · · ,F (o)(sV ))

4: cV ← (F (1)
V (sV ), · · · ,F (o)

V (sV ))
5: E ← A−1

6: until ∃ A−1

7: repeat
8: (G, I, J)← (CA−1, CA−1B, [D − CA−1B]−1)
9: until ∃ [D − CA−1B]−1

10: K ← A−1B
11: r ← {0, 1}l
12: h← H(M ||r||ph) ( h← H(M ||r) in LR)
13: ξ ← h− cV
14: sO = (sv+1, ..., sn)← BMI(R−1 · ξ, G, J, K)

15: z←

(
sTV + T · STO

STO

)
16: σ ← (z, r)
17: Return σ

Algorithm 3 Verify(pk,M, σ)

Require: message M , signature σ = (z, r) ∈ Fn
q × {0, 1}l.

Ensure: boolean value TRUE or FALSE.
1: h← H(M ||r||ph) ( h← H(M ||r) in LR)
2: h’← P(z)
3: if h’ == h then
4: return TRUE
5: else
6: return FALSE
7: end if
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3 Security Analysis

3.1 Existential Unforgeability

We first describe a computational hard problem and its hardness assumption.

Definition 1 (MQ-Problem). Given a system P = (P(1), · · · ,P(m)) of m
quadratic equations defined over Fq in variables x1, · · · , xn and y = (y1, · · · , ym) ∈
Fmq , find values x′ = (x′1, · · · , x′n) ∈ Fnq such that P(x′) = y: P(1)(x′) =

y1, · · · ,P(m)(x′) = ym.

Definition 2 (Extended Isomorphism of Polynomials (EIP) Problem).
Given a nonlinear multivariate system P such that P = S ◦ F ◦ T for linear or
affine maps S and T , and F belonging to a special class of nonlinear polynomial
system C, find a decomposition of P such that P = S′ ◦ F ′ ◦ T ′ for linear or
affine maps S′ and T ′, and F ′ ∈ C.

Definition 3 (UOV Problem). Given (P, y), find a preimage z ∈ Fnq such

that P(z) = y, where P is derived from (P,F , T ) ← GenUOVfunc(1λ) and a
challenge y ∈ Fmq .

Definition 4. An algorithm A has advantage ε to solve the UOV problem if

AdvA(t) = Pr
[
A(P, y) = z | P ← GenUOVfunc, y ← Fmq

]
≥ ε.

If there is no algorithm A(t, ε) that solves the UOV problem then we define that
the UOV problem is (t, ε)-hard.

Definition 5 (UOV Assumption). The UOV function generator GenUOV-
func is (t(λ), ε(λ))-secure if there is no inverting algorithm that takes as input P
generated P ← GenUOVfunc and a challenge y ∈ Fmq to find a preimage z ∈ Fnq
such that P(z) = y at t(λ) time with probability at least ε(λ).

In [30], in order to achieve existential unforgeability against adaptive chosen-
message attacks (EUF-CMA) of UOV, the authors used a usual security proof
for the Full-Domain-Hash scheme by modifying the signing algorithm to provide
uniform distribution of the signatures. Their slightly modified UOV scheme is to
use a random salt r as H(M ||r) instead of H(M). Then the modified signature
has the form σ = (z, r), where z is an original UOV signature. The existential
unforgeability of MQ-Sign follows the security proof of the modified UOV in [30].

Theorem 1. If the UOV problem is (ε′, t′)-hard then the modified UOV is (ε, t,
qH , qs)-secure in the EUF-CMA game, where

ε′ ≥ ε · 1− (qH + qs)qs2
−l

qH + qs + 1
, t′ ≥ t+ (qH + qs + 1)(tP +O),

tP is running time to evaluate P and l is the length of a salt.



(MQ-Sign) 13

3.2 Security Analysis and Cost Analysis against Known Attacks

Our scheme based on the missing Oil∗Oil structure for inverting the quadratic
map uses the sparse polynomials for improving signing performance and re-
ducing the secret key size. Our scheme is considered as special cases of UOV
central map preserving full rank of the corresponding symmetric matrices. Se-
curity analysis of our scheme against known algebraic attacks is similar to those
of UOV. We provide complexity estimates of our scheme against major alge-
braic attacks: direct attacks, Kipnis-Shamir attacks, key recovery attacks using
good keys and intersection attacks. Throughout this document, we denote by
the term ‘complexity’ the number of field multiplications an algorithm performs
before outputting a solution. Our complexity estimates are expressed as the base
2 logarithm of this number.

[Direct Attacks.] The most straightforward way to cryptanalyze the MQ-
signature schemes is to solve the public system P(x) = H(M ||r||ph). The public
keys behave like random systems and the degree of regularity of the system de-
rived from the public key is the same as that of random systems of the same size.
In order to solve the resulting quadratic system, the attacker can use an arbi-
trary method such as XL, Polynomial XL, Gröbner Basis algorithms and hybrid
algorithms [4, 17]. The selection of o for our scheme depends on their security
against the direct attacks. We summarize complexity of our scheme against the
direct attacks at the three security levels using the known algorithms for solving
the MQ-problem in Table 1, Table 2, and Table 3. According to this analysis,
we choose o ≥ 46, 72, 96 at the security levels 1, 3, and 5, respectively.

Table 1. Complexity estimates against the direct attacks at the security level 1.

Algorithms 44 46 48 50 52

Hybrid F5 131.86 137.43 142.99 148.56 154.12
Wiedemann XL 133.40 138.98 144.55 150.13 155.70
Polynomial XL 125.50 131.25 138.19 142.66 146.99

Table 2. Complexity estimates against the direct attacks at the security level 3.

Algorithms 68 70 72 74 76

Hybrid F5 195.37 200.92 203.58 209.03 214.59
Wiedemann XL 196.93 202.51 204.97 210.41 216.01
Polynomial XL 189.41 194.50 199.39 203.04 209.49

Table 3. Complexity estimates against the direct attacks at the security level 5.

Algorithms 94 96 98 100 102

Hybrid F5 261.18 266.50 272.10 277.32 279.90
Wiedemann XL 262.50 267.76 273.38 278.54 281.23
Polynomial XL 253.98 260.24 267.35 271.57 275.31
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[Key Recovery Attacks using Good keys (UOV-Reconciliation).] The
key recovery attacks using equivalent keys and good keys exploit the special
structure of the central map, i.e. zero entries at certain known places to get
equations with variables in T . It is known that there exist a large number of
different secret keys (called equivalent keys) for a given public key of the MQ-
schemes [39, 37]. Wolf and Preneel [39] introduced the notion of equivalent keys as
a fundamental tool to analyze the security of the MQ-schemes. Later, Thomae
[37] generalized the notion of equivalent keys to good keys. If an adversary
finds any of equivalent keys then the adversary can forge any signatures on any
messages although it is not the same as the original secret key. For a private key
(F , T ), (F ′, T ′) is an equivalent key of (F , T ) if P = F ◦ T = F ′ ◦ T ′ and F ′
preserves all systematic zero coefficients of F . Then, there is an equivalent key
(F ′, T ′) such that P = (F ◦ Ω) ◦ (Ω−1 ◦ T ) of the secret key (F , T ) with high
probability such that

T ′−1 = T −1 ·Ω =

(
Iv×v T̃ ′v×o
0o×v Io×o

)
, Ω =

(
Ω

(1)
v×v 0v×o

Ω
(3)
o×v Ω

(4)
o×o

)
. (2)

To further decrease this complexity, the good keys are used, where the good keys
do not preserve all the zero coefficients of F , but just some of them. Thus, we
can choose F and Ω more widely and further reduce the number of variables.
The complexity of our scheme against the key recovery attacks using good keys
is determined by solving a system of o quadratic equations with v variables:

ConplexityKRA(q, o, v) = CMQ(q, o, v),

where CMQ(q, o, v) denotes the complexity of solving a random system of o
equations in v variables defined on Fq by using the algorithms for solving the
MQ-problem.

[Kipnis-Shamir Attacks (UOV Attacks)]. The Kipnis-Shamir attacks were
originally used to break the balanced Oil and Vinegar signature scheme (v =
o) [20]. The attacks can be generalized to the unbalanced case (v > o). In
the attacks, to find an equivalent key, we look for the space T −1(O), where O
is the Oil subspace of Fnq . Note that we get P (i) = TT · F (i) · T , where F (i)

and P (i) are the symmetric matrices of the quadratic parts of F (i) and P(i),
respectively, for i = 1, · · · , o. Then the probability that the matrix W−11 · W2,
where W1 (invertible) and W2 are random linear combinations of the matrices
P (i) (i = 1, · · · , o), has a nontrivial invariant subspace (which is also a subspace
of T −1(O)) is qv−o−1. By computing the minimal invariant subspaces ofW−11 ·W2

and finding subspaces T −1 among them, the attack can recover the equivalent
key. The complexity of the whole attack process is estimated by

ConplexityKS(q, o, v) = qv−o−1 · o4.

[Intersection Attacks.] The intersection attack [6], an improved version of
the Kipnis-Shamir attack, is considered as the most powerful attack among the
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known attacks. Its complexity is

ConplexityInter(q, o, v) = CMQ(q, ok(k + 1)/2− k(k − 1), vk − o(k − 1)),

where k < v/(v−o). According to the complexity analysis of our schemes against
the intersection attacks, we choose v such that v > 1.5 · o. After determining the
number of polynomials, o, we have to decide the number of Vinegar variables,
v, depending on the Kipnis-Shamir attack, the key recovery attacks using good
keys and the intersection attacks. Since the complexity of our schemes against
the intersection attacks is lower than that of the reconciliation attacks, v can be
determined by the intersection attacks.

[Replacement Attack.] One can mount some attacks by replacing the linear
equation Li with a new variable yi, where v > o. Then the Vinegar×Vinegar

quadratic parts of the secret key, FV = (F (1
V , · · · ,F

(o)
V ), are written in variables,

y1, · · · , yv, as

F (1)
V = L1 · y1 + L2y2 + · · ·+ Lvyv,

F (2)
V = Lv · y1 + L1y2 + · · ·+ Lv−1yv,

· · · ,

F (o)
V = Lv−o+2 · y1 + Lv−o+3y2 + · · ·+ Lv−o+1yv,

where Li is a line expressed by new variables, y1, · · · , yv. This replacement

preserves full rank of the symmetric matrix of the quadratic part of F (k)
V for

k = 1, · · · , o.

Finally, we summarize complexities of our scheme against the attacks in Table
4, where CMQ(q,m, n) denotes the complexity of solving a random system of m
equations in n variables defined on Fq by using the algorithms for solving the
MQ-problem.

Table 4. Complexities of MQ-Sign(q, o, v) against the algebraic attacks.

Attack Complexity

Direct Attack CMQ(q, o, n)
UOV-Reconciliation Attack CMQ(q, o, v)

Kipnis-Shamir Attack qv−o−1 · o4
Intersection Attack CMQ(1, ok(k + 1)/2− k(k − 1), vk − o(k − 1))

[Implementation Attacks.] All key dependent operations in our scheme are
performed in a constant-time manner to protect the timing attacks. MQ-Sign
can prevent the side-channel attack in [22] due to the single layer structure.
For secure implementations, the Vinegar values required in signing must not be
revealed or reused [31, 1] .
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3.3 Parameter Selection

Now, we suggest secure parameters at the three security levels in Table 5. Since
the most powerful attacks all the attacks are the direct attack and the inter-
section attack, we give complexity estimates for the two major attacks in Table
5.

Table 5. Parameters and complexities of MQ-Sign(q, o, v) against the major attacks.

Security Level 1 3 5

(q, o, v) (F28 , 46, 72) (F28 , 72, 112) (F28 , 96, 148)

Direct(HF5) 135.5 202.4 262.3
Intersection attack 171.883 242.9 304.5
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4 Computational Efficiency

4.1 Reference and AVX2 Optimized Implementations

We measure the performance of each algorithm on an Intel Xeon(R) Gold 6234
processor at the clock frequency of 3.3GHz. Reference and AVX2-optimized im-
plementation results of MQ-Sign-RR and MQ-Sign-LR are given in Table 6. The
results presented in Table 6 include the numbers of CPU cycles required by the
key generation, signing and verification. Each result of signing and verification
(resp. key generation) is a median of 10,000 (resp. 1,000) measurements. The
source code was developed on Ubuntu 22.04 LTS, compiled using gcc 11.4.0, and
optimization level -O3 applied. Hyperthreading and Turbo Boost are switched
off. Signature and key sizes of MQ-Sign are given in Table 7.

Table 6. Performance of MQ-Sign.

Scheme Security Level 1 3 5

Performance (Reference Code, median cycles)

MQ-Sign-RR
KeyGen 122,046,651 438,023,770 994,466,810

Sign 861,724 1,752,258 3,053,560
Verify 755,522 1,339,244 2,218,340

MQ-Sign-LR
KeyGen 89,401,545 312,936,150 701,261,588

Sign 451,262 1,004,830 2,026,304
Verify 774,652 1,414,666 2,202,376

Performance (AVX2-optimized, median cycles)

MQ-Sign-RR
KeyGen 9,454,708 40,250,626 102,775,550

Sign 90,480 268,866 524,030
Verify 50,460 185,086 363,611

MQ-Sign-LR
KeyGen 5,451,597 25,605,484 67,485,424

Sign 65,300 168,684 360,636
Verify 51,744 191,986 381,019

Table 7. Key/Signaute sizes of MQ-Sign.

Scheme Security Level 1 3 5

MQ-Sign-RR
Public Key 328,505 1,238,825 2,893,025
Secret Key 276,649 1,044,385 2,436,769
Signature 150 216 276

MQ-Sign-LR
Public Key 328,441 1,238,761 2,892,961
Secret Key 160,881 601,249 1,400,113
Signature 150 216 276

MQ-Sign-RR and MQ-Sign-LR have the following differences: i) they have
different secret keys, ii) MQ-Sign-RR includes the hash value of the public key
(ph = H(P)) in the public/secret key and uses H(M ||r||ph) in signing, and
iii) MQ-Sign-LR does not use ph at all. Consequently, they have different per-
formance of key generation and signing, but their verification performance has
little difference.They have different public/secret key sizes, but their signature
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sizes remain unchanged. Compared to MQ-Sign-RR and UOV, the secret key of
MQ-Sign-LR is reduced by about 42%. The performance of key generation and
signing of MQ-Sign-LR is improved by 34% to 42% and 27% to 37% compared
to MQ-Sign-RR. Despite fast performance of signing and verification, the key
generation is slow. We believe our AVX2-optimized implementation of the key
generation still has room for improvement.

4.2 Hashing of Public Key

For stronger security, the hash value of the public key is included in the pub-
lic/secrt key of MQ-Sign-RR, which increases the public/secret key size slightly
and makes key generation inefficient.

Actually, the computation of H(P) is very heavy since the size of the public
key is large. To mitigate this inefficiency, we can use the part of the public

key as input to the hash function, i.e. H(P2||P3), where P2 = {P(k)
2 }ok=1 and

P3 = {P(k)
3 }ok=1. It is because that, in the rogue-key attack described in §2.4,

P(k)
1 = P ′(k)1 (k = 1, · · · , o) for the public keys P and P ′ when the linear maps
T and T ′ are used as the form of equivalent keys. Actually, P and P ′ have the

same central map F , different linear maps T and T ◦ T ′, respectively, and P(k)
1

does not depend on the linear maps. Therefore, the attack can be prevented by

removing P1 from the public key, where P1 = {P(k)
1 }ok=1. In Table 8, MQ-Sign-

RR(s) and MQ-Sign-RR(m) mean strong security and medium security against
the potential attacks by including H(P) and H(P2||P3) in the public/secret key,
respectively. MQ-Sign-RR(o) means not using the hash value of the public key.

Table 8. Performance of key generations for MQ-Sign.

Security Level 1 3 5

MQ-Sign-RR(s) 9,454,708 40,250,626 102,775,550
MQ-Sign-RR(m) 8,291,246 36,168,836 91,291,653
MQ-Sign-RR(o) 6,633,743 30,024,722 77,684,841

4.3 Precomputation

MQ-Sign is designed to allow most of the signature generation to be computed
offline. Precomputation of most of heavy part for solving the linear system leads
to dramatically faster online signing. This precomputation requires additional
memory to store the precomputation values. The offline precompuations of MQ-
Sign-RR and MQ-Sign-LR are different due to the use of different secret keys,
but their on-line signing is the same. The performance of MQ-Sign with precom-
putation is given in Table 9. Finally, MQ-Sign with precomputation is 4.6x, 5.2x,
and 6.3x faster than the scheme without precomputation at the three security
levels, respectively.
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Table 9. Performance of MQ-Sign with precomputation.

Scheme Security Level 1 3 5

MQ-Sign-RR (MQ-Sign-LR)
Sign 19,532 49,256 84,465

Memory 2,266 5,400 9,492
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4. L. Bettale, J.-C. Faugére and L. Perret, Hybrid Approach for Solving Multivariate
Systems over Finite Fields, Journal of Mathematical Cryptology, 3, pp. 177-197,
2009.

5. W. Beullens and B. Preneel, Field Lifting for Smaller UOV Public Keys, IN-
DOCRYPT 2017, LNCS 10698, pp. 227-246, 2017.

6. W. Beullens, Improved Attacks on UOV and Rainbow, EUROCRYPT 2021, Part
I, LNCS 12696, pp. 348-373, 2021.

7. W. Beullens, Breaking Rainbow Takes a Weekend on a Laptop, CRYPTO 2022,
Part II, LNCS 13508, pp. 464-479, 2022.

8. A. Boldyreva, Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme, PKC 2003, LNCS 2567, pp.
31–46, 2003.

9. A. Bogdanov, T. Eisenbarth, A. Rupp and C. Wolf, Time-area Optimized Public-
key Engines: MQ-cryptosystems as Replacement for Elliptic Curves?, CHES 2008,
LNCS 5154, pp. 45-61, 2008.

10. D. Boneh, C. Gentry, B. Lynn, and H. Shacham, Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps, EUROCRYPT 2003, LNCS 2656, pp.
416–432, 2003.

11. A.I.-T. Chen, M.S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E.L.-H. Kuo, F.Y.-S.
Lee and B.-Y. Yang, SSE Implementation of Multivariate PKCs on Modern x86
CPUs, CHES’09, LNCS 5747, pp. 33-48, 2009.

12. P. Czypek, S. Heyse and E Thomae, Efficient Implementations of MQPKS on Con-
strained Devices, CHES 2012, LNCS 7428, pp. 374-389, 2012.

13. J. Ding, M-S. Chen, A. Petzoldt, D. Schmidt, and B-Y. Yang, Rainbow Tech-
nical report, National Institute of Standards and Technology, 2019. available at
https://csrc.nist.gov/projects/ post-quantum-cryptography/round-2-submissions.

14. J. Ding, J. Deaton, Vishakha and Bo-Yin Yang, The Nested Subset Differential
Attack: A Practical Direct Attack Against LUOV which Forges a Signature within
210 Minutes. IACR Cryptol. ePrint Arch. 2020: 967, 2020.

15. J. Ding and D. Schmidt. Rainbow, a New Multivariable Polynomial Signature
Scheme, ACNS 2005, LNCS 3531, pp. 164-175, 2005.



20 Shim et al.

16. H. Furue, K. Kinjo, Y. Ikematsu, Y. Wang, and T. Takagi, A Structural Attack
on Block-Anti-Circulant UOV at SAC 2019, PQCrypto 2020, LNCS 12100, pp.
323–339, 2020.

17. H. Furue and M. Kudo, Polynomial XL: A Variant of the XL Algorithm Using
Macaulay Matrices over Polynomial Rings, IACR Cryptol. ePrint Arch. 2021/1609,
2021.

18. Y. Hashimoto, On the security of Circulant UOV/Rainbow, IACR Cryptol. ePrint
Arch. 2018/947, 2018.

19. Y. Hashimoto, On the security of Hufu-UOV, IACR Cryptol. ePrint Arch.
2021/1044, 2021.

20. A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Oil and Vinegar Signature
Schemes, CRYPTO’99, LNCS 1592, pp. 206-222, 1999.

21. T. Matsumoto, and H. Imai, Public Quadratic Polynomial-Tuples for efficient
Signature-Verification and Message-Encryption, EUROCRYPT’88, LNCS 330, pp.
419-453, 1988.

22. A. Park, K. Shim, N. Koo, D. Han, Side-Channel Attacks on Post-Quantum Sig-
nature Schemes based on Multivariate Quadratic Equations: Rainbow and UOV,
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), pp. 500-523, 2018.

23. J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
Two New Families of Asymmetric Algorithms, EUROCRYPT’96, LNCS 1070, pp.
33-48, 1996.

24. Z. Peng and S. Tang, Circulant Rainbow: A New Rainbow Variant With Shorter
Private Key and Faster Signature Generation, IEEE Access, vol. 5, pp. 11877 -
11886, 2017.

25. Z. Peng and S. Tang, Circulant UOV: a new UOV variant with shorter private key
and faster signature generation, KSII Transactions on Internet and Information
Systems (TIIS), vol. 12(3), pp. 1376-1395, 2018.

26. A. Petzoldt, S. Bulygin, and J. Buchmann, CyclicRainbow: A multivariate signa-
ture scheme with a partially cyclic public key, Indocrypt 2010, pp 33-48, 2010.

27. A. Petzoldt, M-S Chen, B-Y Yang, C. Tao and J. Ding, Design Principles for
HFEv- Based Multivariate Signature Schemes, ASIACRYPT 2015, Part I, LNCS
9452, pp. 311-334, 2015.

28. Post-Quantum Cryptography, Round 2 Submissions, NIST Computer
Security Resource Center, https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Round-2-Submissions.

29. Post-Quantum Cryptography, Round 3 Submissions, NIST Computer
Security Resource Center, https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Round-3-Submissions.

30. K. Sakumoto, T. Shirai, H. Hiwatari: On Provable Security of UOV and HFE
Signature Schemes against Chosen-Message Attack. PQCrypto 2011, LNCS vol.
7071, pp 68 - 82. Springer, 2011.

31. K-A. Shim and N. Koo, Algebraic Fault Analysis of UOV and Rainbow With the
Leakage of Random Vinegar Values, IEEE Trans. Inf. Forensics Secur, 15, pp.
2429-2439, 2020.

32. K-A. Shim, S. Lee, N. Koo, Efficient Implementations of Rainbow and UOV using
AVX2, IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), pp. 245-269, 2022.

33. D. Smith-Tone and R. Perlner, Rainbow band separation is better than we thought,
IACR Cryptol. ePrint Arch. 2020/702, 2020.

34. A. Szepieniec and B. Preneel, Block-anti-circulant unbalanced oil and vinegar, SAC
2019, LNCS 11959, pp. 574–588, 2020.



(MQ-Sign) 21

35. C. Tao, A Method to Reduce the Key Size of UOV Signature Scheme, IACR
Cryptol. ePrint Arch. 2019/473, 2-19.

36. C. Tao, A. Petzoldt and J. Ding, Efficient Key Recovery for All HFE Signature
Variants, CRYPTO 2021 (I), pp. 70–93, 2021.

37. E. Thomae, About the Security of Multivariate Quadratic Public Key Schemes,
Dissertation Thesis by Dipl. math. E. Thomae, RUB, 2013.

38. J. A. Verbel, J. Baena, D. Cabarcas, R. A. Perlner, and D. Smith-Tone, On the com-
plexity of “superdetermined” minrank instances, PQCrypto 2019, LNCS 11505, pp.
167–186, 2019.

39. C. Wolf and B. Preneel, Large Superfluous Keys in Multivariate Quadratic Asym-
metric Systems, PKC 2005, LNCS 3386, pp. 275-287, 2005.

40. B.-Y. Yang and J.-M. Chen, TTS: Rank Attacks in Tame-Like Multi-
variate PKCs. IACR Cryptology ePrint Archive, Report 2004/061, 2004.
http://eprint.iacr.org/2004/061

41. B.-Y. Yang and J.-M. Chen, Building Secure Tame-like Multivariate Public-Key
Cryptosystems: The new TTS, ACISP 2005, LNCS 3574, pp. 518-531, 2005.


