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Abstract. We present the RLWE-based signature scheme, NCC-Sign,
using non-cyclotomic polynomials and cyclotomic trinomials, which fol-
lows the design paradigm of Dilithium based on Bai and Galbraith
scheme with public key compression. NCC-Sign uses two types of polyno-
mial rings, based on the non-cyclotomic polynomial φ(X) = Xp −X − 1
for stronger security and the trinomial φ(X) = Xn − Xn/2 + 1 for ef-
ficiency. It provides higher security by choosing more conservative pa-
rameters whose classical Core-SVP estimates exceed or are close to 128,
192, and 256 bits at the three security levels, respectively. NCC-Sign us-
ing the non-cyclotomic polynomial provides stronger security guarantee
than power-of-2 cyclotomic counterparts by minimizing structures that
can be used by attackers. However, it is inefficient since it cannot use
the optimized implementation techniques for the cyclotomic power-of-
2 rings. Our cyclotomic trinomial counterpart meets both conservative
security and efficiency requirements.

Keywords: Cyclotomic field · Digital signature · Non-cyclotomic poly-
nomial · RLWE · RSIS · Inert Modulus · Trinomial.

1 Introduction

Majority of efficient lattice-based schemes including NIST Post-Quantum Cryp-
tography (PQC) Standardization Round 4 algorithms [2] are based on the struc-
tured lattices using power-of-2 cyclotomics by default. Explicitly, Kyber, Saber,
Dilithium, and Falcon use the 2n-th cyclotomic polynomial φ(X) = Xn + 1,
where n is a power of 2, and NTRU KEM uses the p-th cyclotomic polynomial
φ(X) = Xp − 1, where p is prime [8, 14, 16, 25, 19–21]. They achieve high speeds
on several architectures as well as reasonably small signatures and key sizes.

There are advantages to choosing the cyclotomic polynomials, but there has
been a potential threat of attacks using unnecessary algebraic structures [6, 10].
The attacks related to the additional algebraic structures exploit the fact that
the field Q[X]/φ(X) has many subfields for certain φ(X) [5, 3], some attacks use
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the fact that a number field Q[X]/φ(X) has small Galois group [11], and some
attacks use the fact that there exist ring homomorphisms from Zq[X]/φ(X) to
some smaller nonzero rings [17, 18, 12]. There is a sub-exponential time attack
against NTRU assumptions with large moduli, which invalidated security guar-
antees of some FHE schemes [3, 23, 9]. There are also polynomial-time quantum
attacks that broke Soliloquy, the cyclotomic case of Gentry’s original fully ho-
momorphic encryption (FHE) at STOC 2009 and the cyclotomic case of the
Grag-Gentry-Halevi scheme under the plausible assumptions [7].

Although no attacks are known that perform significantly better on the
schemes based on the structured lattices of cyclotomics, it remains possible that
further cryptanalysis could exploit the structures. Therefore, it is necessary to
think about countermeasures against the potential threats. As an opponent of
these cyclotomics, a lattice-based KEM, NTRU Prime KEM, was selected as one
of the alternative candidates of NIST PQC Round 3 [1], but there is no such a
digital signature counterpart. NTRU Prime KEM uses the NTRU Prime field [6],
which aims to remove unnecessary structures exploited in attacks. Suggestions
for the NTRU Prime field are as follows:

1. Choose φ(X) as a monic irreducible polynomial of prime degree p whose
Galois group is isomorphic to Sp (the largest Galois group possible).

2. Choose a prime number q such that φ(X) is still an irreducible polynomial
in Zq[X], i.e. Zq[X]/φ(X) becomes a field.

NTRU Prime field uses an irreducible polynomial φ(X) = Xp−X − 1 to satisfy
the first condition, and the second condition was satisfied with probability 1/p
for a random prime modulus q.

The schemes based on unstructured lattices guarantee stronger security than
those based on the structured lattices, but they suffer from much larger key
sizes. Our goal is to construct a lattice-based signature scheme that achieves
stronger security guarantee than cyclotomic counterparts and better efficiency
than unstructured lattice-based schemes.

1.1 Design Rationale, Advantages and Limitations

NCC-Sign uses the non-cyclotomic polynomial φ(X) = Xp −X − 1 for stronger
security and the trinomial φ(X) = Xn −Xn/2 + 1 for efficiency. It is designed
with the following design rationale.

[NCC-Sign Non-cyclotomic]

– A RLWE-based Signature Scheme using the Non-cyclotomic Poly-
nomial. NCC-Sign follows the design paradigm of Dilithium based on Bai
and Galbraith scheme with public key compression. It uses a prime-degree
large Galois group inert modulus with φ(X) = Xp − X − 1, which allows
to eliminate the structures that were the causes of the previous attacks in
the power-of-2 cyclotomic cases. Its existential unforgeability of our scheme
is proved in (Q)ROM under the RLWE, RSIS and SelfTargetRSIS assump-
tions in a similar way to Dilithium [16, 25]. Unlike Dilithium based on the
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MLWE/MSIS problems over the power-of-2 cyclotomic ring, NCC-Sign is
based on the RLWE/RSIS problems over the non-cyclotomic polynomial
ring. Such a choice leads to selection of more conservative parameters for
higher security.

– Intermediate Security Guarantee. In terms of the potential attacks,
the schemes based on non-cyclotomic polynomials are more confidence than
their ring and module counterparts. NTRU Prime KEM [6, 10] presented
evidences that non-cyclotomic scheme had lower risks against the related
classical and quantum attacks than the cyclotomic counterparts. NCC-Sign
provides intermediate security guarantees between unstructured lattices and
cyclotomic structured lattices against the potential threats.

– A New Optimized SampleInBall. We propose a new optimized SampleInBall
to choose the challenge polynomial in signing and verification algorithms
using two different polynomials. This algorithm provides speed-up ranging
from 9% to 15% in the rejection sampling phase, depending on the parameter
sets.

– Flexible Choice of Parameters and Conservative Security. In the
RLWE and MLWE-based schemes over the power-of-2 cyclotomic ring, the
degree of polynomials must jump in increasingly by doubling or 256, respec-
tively. NCC-Sign provides flexibility in the parameter selection without any
jumps appearing in the schemes. We select flexible conservative parameter
sets whose classical Core-SVP estimates nearly equal or exceed 128, 192, and
256 bits at the three security levels, 1, 3, and 5, respectively. Particularly,
the expected number of repetitions in the rejection samplings of NCC-Sign
are up to 50% of Dilithium.

– Protection against Side-Channel Attacks. NCC-Sign uses uniform sam-
pling to prevent the side-channel attacks targeting the discrete Gaussian dis-
tribution. All key dependent operations in our scheme are performed in a
constant-time manner.

NCC-Sign using non-cyclotomic rings ensures stronger security guarantee
against the potential threat, but is inefficient since it cannot use the optimized
implementation techniques for the power-of-2 cyclotomic rings. Our cyclotomic
trinomial counterpart meets both conservative security and efficiency require-
ment.

[NCC-Sign Trinomial]

– A RLWE-based Signature Scheme using the Trinomial. Our trino-
mial counterpart uses the m-th cyclotomic trinomial φ(X) = Xn−Xn/2 +1,
where m = 2a · 3b, a, b ≥ 1 and n = φ(m) = m/3. The use of the trinomials
with the extended form of degree n = 2a · 3b provides sufficient candidates
of possible degrees which allows for choosing more conservative parameters
for higher security.

– Flexible Choice of Parameters and Conservative Security. The trino-
mial with the extended form of degree allows use to select flexible parameter
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selection for conservative security avoiding the parameter jump appeared in
the RLWE-based schemes on the power-of-2 rings. While the classical Core-
SVP estimates of Dilithium parameter sets are 123, 182, and 252 bits at the
three security levels, respectively, those of our parameter sets exceed or are
close to 128, 192, and 256 bits at the three security levels, respectively.

– Efficient implementation. NCC-Sign using the trinomial is faster than
that using the non-cyclotomic polynomial. Although it uses larger degrees
than Dilithium for higher security, its reference implementation is faster
than that of Dilithium. However, our AVX2-optimized implementation is
1.8x to 2.2x times slower than Dilithium. Although the improvements in
SHAKE optimization due to the module structure and NTT optimization are
significant in AVX2 optimized implementation of Dilithium, the optimization
techniques cannot be applied to our scheme. We believe our AVX2 optimized
implementation of our scheme has room for improvement, especially in NTT
optimization.

– Protection against Side-Channel Attacks. Our trinomial counterpart
also uses uniform sampling and its all key dependent operations are per-
formed in a constant-time manner.
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2 Signature Scheme: NCC-Sign

2.1 Basic Operations

Throughout this document, in NCC-Sign Non-cyclotomic, we letR := Z[X]/(Xp−
X − 1) and Rq := Zq[X]/(Xp − X − 1) for some prime numbers p and q such
that Rq is a field. In NCC-Sign Trinomial, we let R := Z[X]/(Xn −Xn/2 + 1)
and Rq := Zq[X]/(Xn−Xn/2 + 1) for n = 2a · 3b and prime number q. Boldface
lower-case letters represent elements in R or Rq, and non-boldface lower-case
letters represent elements in Z and Zq.

Modular Reductions. For an integer α, we let r′ = r mod± α to be the
unique integer r′ ∈ (−α/2, α/2] such that r′ ≡ r mod α. Similarly, we let r′ =
r mod+ α to be the unique integer r′ ∈ [0, α). For an element r = r0 + r1X +
. . . rp−1X

p−1 ∈ R, we let r′ = r mod± α (resp. r′ = r mod+ α) to be the
unique element in R such that r′ = r′0+r′1X+. . . r′p−1X

p−1 and r′i = ri mod± α

(resp. r′i = ri mod+ α) for all i. When we do not require exact representation,
we write r mod α or r mod α.

Sizes of elements. For w ∈ Zq, we let ‖w‖∞ :=
∣∣w mod± q

∣∣. We also define
l∞ and l2 norm of w = w0 + w1X + · · ·+ wp−1X

p−1 ∈ R as

‖w‖∞ := max
i
‖wi‖∞, ‖w‖2 :=

√
‖w0‖2∞ + · · ·+ ‖wp−1‖2∞,

respectively. We write Sη to denote the set of elements w ∈ R that satisfy

‖w‖∞ ≤ η. We let S̃η :=
{
w mod± 2η : w ∈ R

}
. One can see that S̃η ⊂ Sη,

but S̃η does not include the elements with at least one −η coefficient.

A New SampleInBall Algorithm. We use multiple hashing algorithms that
map strings in {0, 1}∗ to random elements in desired domains such as Sη and
Rq. SampleInBall algorithm maps a random seed ρ ∈ {0, 1}256 to an element of
Bτ , the subset of S1 consists of elements that have total τ nonzero coefficients
in {−1, 0, 1}. We propose a new SampleInBall algorithm using our ring structure
as follows: the challenge polynomial can be chosen in the following two ways

– choose a single polynomial c ∈ R having τ non-zero coefficients,
– choose two polynomials ci ∈ R having τi non-zero coefficients for i = 1, 2

and combine them such that c = c2+Xp2c1. Note that ci is a degree-(pi−1)
polynomial.

It is enough to specify the method of choosing polynomial having fixed number
of non-zero coefficients. Basically, we follow [16, 25]. High-level description is
described in Algorithm 1. More specifically, Step 3 and 4 in Algorithm 1 can be
done in the following way from the 256-bit hash seed ρ. We use SHAKE-256 to
obtain a stream of random bytes of variable length from the seed ρ. The first τ
bits in the first 8 bytes of this random stream are τ random sign bits si ∈ {0, 1},
i = 0, . . . , τ − 1, required in Step 4. The remaining 64 − τ bits are discarded.
For the random j required in Step 3, we use next 10 or 11 bits from the next



6 Shim et al.

two bytes in the stream and interpret it as a single number less than 210 or 211

depending on p. When this number is less than or equal to i, we use it as j.
If not, we use next two bytes in the stream to choose j. Lastly, for the case of
two polynomials, we use another SHAKE-256 to obtain 512-bits from the seed
ρ. Then the first 256-bits are used as a seed for c1 while the second 256-bits are
used as a seed for c2. From the seeds, the needed randomness can be extracted
as is described in Algorithm 1. We will analyze the probability of the rejection
in Sign algorithm using the proposed SampleInBall in §3.3.

Algorithm 1: SampleInBallp,τ (ρ).
Create a random p-element array with τ ±1’s and p − τ 0’s.
Use the input seed ρ (and an XOF) to generate the randomness
needed in Step 3 and 4.

1 Initialize c = c0c1 . . . cp−1 = 00 . . . 0
2 for i := p− τ to p− 1 do
3 j ← {0, 1, . . . , i}
4 s← {0, 1}
5 ci := cj
6 cj := (−1)s

7 return c

Algorithm 2: Decomposeq(r, α)

1 r := r mod+ q

2 r0 := r mod± α
3 if r − r0 = q − 1 then
4 r1 := 0
5 r0 := r0 − 1

6 else
7 r1 := (r − r0)/α
8 return (r1, r0)

Algorithm 3: UseHintq(h, r, α)

1 m := (q − 1)/α
2 (r1, r0) := Decomposeq(r, α)

3 if h = 1 and r0 > 0 then
4 return

(r1 + 1) mod+m
5 if h = 1 and r0 ≤ 0 then
6 return

(r1 − 1) mod+m
7 return r1

Algorithm 4: Power2Roundq(r, d)

1 r := r mod+ q

2 r0 := r mod± 2d

3 return
(
(r − r0)/2d, r0

)
Algorithm 5: HighBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α)

2 return r1

Algorithm 6: LowBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α)

2 return r0

Algorithm 7: MakeHintq(z, r, α)

1 r1 := HighBitsq(r, α)

2 v1 := HighBitsq(r + z, α)

3 return Jr1 6= v1K

High/Low Order Bits and Hints. We use several algorithms, Algorithm 2-7,
that extract higher/lower bits of an input, and the other algorithms that help
to correctly produce higher bits of a summation r + z ∈ Zq when r ∈ Zq and
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z ∈ Zq is small. The algorithms can be extended to use inputs in Rq (except for
d and α) by applying the algorithm to each coefficient.

Other Functions. ExpandA, ExpandS and ExpandMask maps random seeds to
a ∈ Rq, (s1, s2) ∈ Sη × Sη, and y ∈ S̃η, respectively. We instantiate function H
as the extendable-output function (XOF) SHAKE-256.

2.2 Specification of NCC-Sign

The KeyGen, Sign and Verify algorithms of NCC-Sign are presented in Algorithm
8, 9, and 10, respectively.

Algorithm 8: KeyGen

1 (ζ, ζ ′)← {0, 1}256 × {0, 1}256
2 (ξ1, ξ2,K) ∈ {0, 1}256 × {0, 1}256 × {0, 1}256 := H(ζ ′)
3 a ∈ Rq := ExpandA(ζ) (Trinomial version: â(6= 0) ∈ Tq := ExpandA(ζ))
4 (s1, s2) ∈ Sη × Sη := ExpandS(ξ1, ξ2)
5 t := as1 + s2 (trinomial version: t := INTT(â ◦ NTT(s1)) + s2)
6 (t1, t0) := Power2Roundq(t, d)
7 ph ∈ {0, 1}256 := H(ζ ‖ t1)
8 return (pk = (ζ, t1), sk = (ζ, ph,K, s1, s2, t0))

Algorithm 9: Sign(sk,M)

1 a ∈ Rq := ExpandA(ζ) (Trinomial version: â ∈ Tq := ExpandA(ζ))
2 µ ∈ {0, 1}512 := H(ph ‖M)
3 κ := 0, (z,h) := ⊥
4 ρ ∈ {0, 1}512 := H(K ‖ µ) (or ρ← {0, 1}512 for randomized signing)
5 while (z,h) = ⊥ do

6 y ∈ S̃γ1 := ExpandMask(ρ, κ)
7 w := ay (Trinomial version: w := INTT(â ◦ NTT(y)))
8 w1 := HighBitsq(w, 2γ2)

9 c̃ ∈ {0, 1}256 := H(µ ‖ w1)
10 c ∈ Bτ := SampleInBallp,τ (c̃) (Trinomial version additionally stores

ĉ := NTT(c))
11 z := y + cs1 (Trinomial version: z := y + INTT(ĉ ◦ NTT(s1)))
12 r0 := LowBitsq(w − cs2, 2γ2) (Trinomial version performs

INTT(ĉ ◦ NTT(s2)) to compute cs2)
13 if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β then
14 (z,h) := ⊥
15 else
16 h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2) (Trinomial version

performs INTT(ĉ ◦ NTT(t0)) to compute ct0)
17 if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω
18 then
19 (z,h) := ⊥
20 κ := κ+ 1

21 return σ = (c̃, z,h)
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Algorithm 10: Verify(pk,M, σ = (c̃, z,h))

1 a ∈ Rq := ExpandA(ζ) (Trinomial version: â ∈ Tq := ExpandA(ζ))
2 µ ∈ {0, 1}512 := H(H(ζ ‖ t1) ‖M)
3 c := SampleInBall(c̃) (Trinomial version additionally stores ĉ := NTT(c))

4 w′1 := UseHintq(h,az− ct1 · 2d, 2γ2) (Trinomial version performs

INTT(â ◦ NTT(z)) and INTT(ĉ ◦ NTT(2d · t1)) to compute az and
ct1 · 2d, respectively)

5 return J‖z‖∞ < γ1 − βK and Jc̃ = H(µ ‖ w′1)K and
J# of 1’s in h is ≤ ωK

We offer both deterministic and randomized versions of the algorithm Sign.
For randomized version, the procedure for generating ρ is replaced by random
sampling from {0, 1}512, whereas deterministic version uses collision-resistant
hash function to digest a message M into µ using the hash value of the public
key ph, then uses a secret key dK and µ as an input of H to safely generate ρ.
We use two separate seeds, ζ and ζ ′, to generate a public key a and a secret key
(s1, s2,K), respectively.

We let Tq to be the domain of NTT representations, and ◦ to be the coordinate-
wise multiplication in Tq. NTT and INTT are NTT and inverse NTT opera-
tions, respectively. We note that a random string sampled from ExpandA can
be interpreted as a random element in Tq as well. Therefore, we can write
â ∈ Tq := ExpandA(ζ) to sample the NTT representation of a random ele-
ment a ∈ Rq. The security proof of NCC-Sign in §3.1 requires the invertibility
of a. In fact, in Non-cyclotomic version, a is always invertible, but in Trinomial
version, its invertibility must be checked. For this, ExpandA iteratively samples
â until none of the coefficients of â is zero, which makes a invertible in step 3 of
Algorithm 8.

3 Security Analysis and Parameter Selections

3.1 Existential Unforgeability

For security proof, we use the following hardness assumptions.

Definition 1 (Ring-LWEq,χ Problem). Let q be a positive integer. For a prob-

ability distribution χ over Rq, sample a
$← Rq and a vector s1, s2 ← χ, and

output (a,as1 + s2).

Definition 2 (Decision Ring-LWEq,χ Problem). Given a pair (a, t) decide,
with non-negligible advantage, whether it came from the RLWE distribution or it
was generated uniformly at random from Rq×Rq. The advantage of the adversary
A in solving decisional RLWE problem over the ring Rq is

AdvRing-LWE
q,χ (A) :=

∣∣∣Pr[b = 1 |a, t $← Rq; b← A(a, t)

− Pr[b = 1 |a $← Rq, s1, s2 ← χ; b← A(a,as1 + s2)]
∣∣∣ .
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We say RLWE is hard when the above advantage is negligible for all (quantum)
probabilistic polynomial-time algorithm A.

Definition 3 (Ring-SISq,l,γ Problem). The advantage of the adversary A to
solve RSIS problem over the ring Rq is

AdvRing-SIS
l,γ (A) := Pr

[
0 < ‖~y‖∞ ≤ γ ∧

[
a1 . . . al 1

]
· ~y = 0

∣∣∣a1 . . . ,al
$← Rq; ~y← A(a1, . . . ,al)

]
.

Definition 4 (SelfTargetRSISq,γ,H Problem). For the cryptographic hash func-

tion H, the advantage of A to solve SelfTargetRSIS problem AdvSelfTargetRSISH,γ (A)
is defined as

Pr

 0 ≤ ‖~y‖∞ ≤ γ ∧
H(µ‖

[
a1 a2 1

]
· ~y) = c

∣∣∣∣∣∣a1,a2
$← Rq;

~y :=

r1
c
r2

 , µ
← A|H(·)〉(a1,a2)

 .
We note that there is a classical reduction from RSIS to SelfTargetRSIS [16, 25].

For security analysis of our scheme, we need the following lemmas in [25, 16].

Lemma 1 ([16, 25]). Suppose that q and α are positive integers satisfying
q > 2α, q ≡ 1 (mod α) and α is even. Let r and z be elements of Rq where
‖z‖∞ ≤ α/2, and let h, h′ be vectors of bits (polynomials in Rq where coefficients
are 0 or 1). Then the HighBitsq, MakeHintq, and UseHintq algorithms satisfy the
following properties:

1. UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).
2. Let v1 = UseHintq(h, r, α). Then ‖r− v1 · α‖∞ ≤ α+ 1. Furthermore, if the

number of 1’s in h is ω, then all except at most ω coefficients of r − v1 · α
will have magnitude of at most α/2 after centered reduction modulo q.

3. For any h, h′, if UseHintq(h, r, α) = UseHintq(h
′, r, α), then h = h′

Lemma 2 ([16, 25]). If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2− β, then

HighBitsq(r, α) = HighBitsq(r + s, α).

Sketch of Security Proofs. For existential unforgeability against chosen-
message attacks (UF-CMA), existential unforgeability against no-message at-
tacks (UF-NMA) is sufficient if the underlying identification scheme is accepting
honest-verifier zero-knowledge (acHVZK) [4], . The security of Dilithium is an-
alyzed in [22] where Fiat-Shamir signatures are analyzed and it is shown that
deterministic UF-NMA secure signature schemes are also UF-CMA-secure in the
QROM. However, the gap in CMA to NMA reduction is found and fixed in [4,
15]. The gap lies in the fact that non-accepting transcripts disturbs the distri-
bution of random oracle answers towards accepting transcripts. To fix this gap,
[15] considers HVZK simulator for reprogramming accepted and rejected tran-
scripts and [4] uses additional hybrid step that removes rejected transcripts. In
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the end, with worse bound, [4, 15] provide the security proof of Dilithium which
need larger commitment min-entropy.

Since NCC-Sign is a ring-version of Dilithium over the non-cyclotomic ring
and the cyclotomic trinomial ring, the security proof of Dilithium can be applied
to NCC-Sign as it is. What we have to do is to check the bound when two poly-
nomials are multiplied and when k = l = 1 is applied. NCC-Sign has slightly
worse bound than Dilithium because of the coefficient growth when two polyno-
mials are multiplied. We sketch that NCC-Sign achieves acHVZK and UF-NMA
in (Q)ROM. We assume that a public key is given without the compression.
Proving security in this case also shows the security when compression is used.
We let H to be a random oracle that maps its input to an element in Bτ .

UF-NMA security. In order to prove UF-NMA of our scheme based on RLWE
and SelfTargetRSIS assumptions, firstly using RLWE assumption, we replace
the public key by random elements of Rq, (a, t). Then, the adversary A receives
(a, t) and needs to output valid message/signature pair M and (z,h, c) such
that

‖z‖∞ < γ1 − β, H(µ‖UseHintq(h,az− ct1 · 2d, 2γ2)) = c,

and the number of 1’s in h is less than ω. Lemma 1 implies

2γ2 · UseHintq(h,az− ct1 · 2d, 2γ2) = az− ct1 · 2d + v,

where ‖v‖∞ ≤ 2γ2 + 1. Let t = t1 · 2d + t0 where ‖t0‖∞ ≤ 2d−1. Then

az− ct1 · 2d + v = az− c(t− t0) + v = az− ct + (ct0 + v) = az− ct + v′,

where ‖v′‖∞ ≤ 2τ2d−1 + 2γ2 + 1. It follows that using adversary, we find
z, c,v′,M such that ‖z‖∞ < γ1 − β, ‖c‖∞ = 1, ‖v′‖∞ ≤ 2τ · 2d−1 + 2γ2 + 1,
M ∈ {0, 1}∗, such that

H(µ‖ 1

2γ2

[
a −t 1

]
·

 z
c
v′

) = c.

Let H(µ‖x) = H′(µ‖2γ2 ·x). Then H′(µ‖
[
a −t 1

]
·

 z
c
v′

) = c and this solves the

SelfTargetRSIS problem with γ = max{γ1 − β, 2τ · 2d−1 + 2γ2 + 1}.

Zero-knowledgeness. Now we prove that our scheme is acHVZK. Assume that
public key is t (rather than t1). We note that t0 is used in simulation. It is clear
that if our scheme is zero-knowledge with t then it is zero-knowledge with t1.
Let w = ay and z = y + cs1. Then w − cs2 = ay − cs2 = az− ct since

az− ct = a(y + cs1)− ct = ay + acs1 − ct = ay − c(t− as1) = w − cs2.
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Now, Pr[z, c] = Pr[c] Pr[y = z−cs1 | c] where ‖z‖∞ ≤ γ1−β. If ‖csi‖∞ ≤ β, then
‖z−csi‖∞ ≤ γ1−1. Since y is chosen uniformly random from S̃γ1 , the probability
is the same for all (z, c). For the simulation, we pick uniformly random

(z, c) ∈ Sγ1−β−1 ×Bτ

and check ‖r0‖∞ = ‖LowBitsq(w − cs2, 2γ2)‖∞ = ‖LowBitsq(az− ct, 2γ2)‖∞ ≤
γ2−β. Since h can be constructed when (z, c) is sampled, and such simulation’s
output is indistinguishable from the honestly generated accepting transcript, our
underlying identification scheme is acHVZK.

At last, we compute the commitment min-entropy in the security proof of
NCC-Sign, which requires the invertibility of a. When φ = Xp − X − 1, a is
always invertible, but it is not in the case that φ = Xn − Xn/2 + 1. The key
generation in Algorithm 8 checks its invertibility in NCC-Sign Trinomial.

Commitment min-entropy. Let R = Z[X]/φ and Rq = Zq[X]/φ. We consider
the min-entropy of the commitment in the underlying sigma protocol. First, we
assume that a is invertible. Now, for every possible w1, we need to compute the
probability that HighBitsq(ay, 2γ2) equals w1 when y is uniformly sampled from

S̃γ1 for a,y ∈ Rq where |S̃γ1 | = (2γ1)n. To compute the probability, we consider
the set Tw1

= {w ∈ Rq | HighBitsq(w, 2γ2) = w1}. Note that |Tw1
| ≈ (2γ2)n.

We have Pry←S̃γ1
[HighBitsq(ay, 2γ2) = w1] = Pry←S̃γ1

[ay = w, w ∈ Tw1 ] =

Pry←S̃γ1
[y = wa−1, w ∈ Tw1

] ≤ |Tw1
|

|S̃γ1 |
≈
(
γ2
γ1

)n
, and the minimum entropy is

about n/2 to n depending on the parameter set. This minimum entropy is larger
than 500 already for the our parameter at the security level 1 in §3.3.

3.2 Security Estimates for RLWE and RSIS

We follow the core-SVP method: BKZ-b calls the SVP oracle of dimension b
which costs in time ≈ 20.292b. For a given basis (c1, ..., cn) as input, ck(i) is a
projection of ck orthogonally to the vectors (c1, ..., ci), let `i = log2 ‖ci(i− 1)‖.
BKZ preserves the determinant of the ci’s, and the sum of the `is remains
constant. After small number of SVP calls inside the BKZ algorithm, we expect
the local slope of the `is converges to

slope(b) =
1

b− 1
log2

(
b

2πe
(π · b)1/b

)
.

After the BKZ reduction, `is are of the following forms:

– The first `is are constant equal to log2 q (possibly empty).
– Then they decrease linearly, with slope slope(b).
– The last `is are constant equal to 0 (possibly empty).

Throughout this section, we write vec(x) = [x0, x1, · · · , xp−1]T when x =
x0 +x1X+ . . . xp−1X

p−1 ∈ Rq, and rot(x) is a matrix whose k-th column vector
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is vec(Xk−1 · x). Also, rot(x)[1:m] is a m× p matrix consisting of first m rows of
a matrix rot(x).

Solving RLWE. Any RLWE instance over R can be viewed as a LWE in-
stance. Let (a,b) ∈ R2

q be a RLWE instance over Rq, where b = a · s1 + s2.
Main lattice attack is a primal attack which finds short vectors in the follow-
ing lattice L of dimension d = p + m + 1 and determinant qm which has the

solution vector (vec(s2), vec(s1), 1): L =

qIm −rot(a)[1:m] b
Ip 0

1

. It is known that

one can expect to find the solution if 2`d−b is greater than the expected norm
of (vec(s2), vec(s1), 1) after projection orthogonally to the first d − b vectors,
which is ς

√
b, where ς is a standard deviation of coordinates of s1, s2. When it

is uniform on [−1, 0, 1], it is
√

2/3 ≈ 0.816. For [−2,−1, 0, 1, 2], it is about 1.414
and for [−4,−3,−2,−1, 0, 1, 2, 3, 4], it is about 2.582. We also assume that the
number of SVP calls inside BKZ is larger than d which equals to p+m+ 1.

Solving RSIS and SelfTargetRSIS. For the RSIS and SelfTargetRSIS prob-
lem, we consider those problems as a RSIS problem. For the RSIS problem,
given uniformly sampled polynomials ai ∈ Rq, i = 1, ..., k, it is required to find

small polynomials yi, i = 0, ..., k, s.t. y0 +
∑k
i=1 yiai = 0 and ‖yi‖∞ ≤ γ. Using

rotation matrix, the RSIS problem can be solved by lattice reduction algorithms
finding short vectors in the following lattice basis of determinant qp which has
the solution vector (−vec(y0), vec(y1), · · · , vec(yk)):

L =


qIp rot(a1) · · · rot(ak)

I
. . .

I

 .
To find the solution vector of the lattice, one uses the BKZ algorithm of

block size b after choosing w columns among rotated vectors to obtain a lattice
of dimension d = w + p. As is explained above, after the BKZ algorithm, one
can obtain `is. Let i be the smallest index such that `i is below log2 q and j
be the largest index such that `j is above 0. Then, from the BKZ algorithm,

one obtains
√

4/3
b

short vectors of length 2`i after projection to the first i − 1
vectors. Now we assume that our short vectors have coordinates that satisfy the
followings:

– the first i− 1 coordinates are uniform modulo q.
– the next j − i + 1 coordinates have similar magnitude and sampled from

Gaussian distribution of standard deviation σ where σ = 2`i/
√
j − i+ 1.

– the last w − j coordinates are zeroes.

If those j coordinates are all have absolute values less than γ, then the vector is
considered as a solution vector. Time complexity of the algorithm finding a SIS
solution is the cost of BKZ-b multiplied by the inverse of the success probability
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of finding such vectors within the
√

4/3
b

vectors. Similar to Dilithium, we also
consider the forget q case. In this case, the lattice basis is first multiplied by
some random unimodular matrices to remove the first q-vectors. Then the BKZ
algorithm is applied and we assume that q-vectors are not found. The above
analysis is applied in the same way to i = 1. As in the RLWE case, we assume
that the cost of BKZ-b is the cost of SVPb multiplied by the dimension d.

Other Attacks. There exist other attacks like algebraic attacks. However, we
do not consider algebraic attacks since they usually need many samples. Our sig-
nature scheme only offer one RLWE sample, which translates to p LWE samples.
Since hybrid attacks are especially suitable to sparse secret, we do not consider
these attacks.

3.3 Parameter Selection for NCC-Sign

According to our security proof, NCC-Sign is secure as long as the following
problems are hard:

– RLWED where D is a uniform distribution over Sη
– SelfTargetRSIS with k = 2, ζ where ζ = max{γ1 − β, 2γ2 + 1 + 2d · τ}
– RSIS with k = 1, ζ ′ where ζ ′ = max{2(γ1 − β), 4γ2 + 2}

Classically, SelfTargetRSIS with ζ can be reduced from RSIS with 2ζ. Thus
for the concrete parameters, we consider RSIS with k = 2, 2ζ instead of the
SelfTargetRSIS problem for simplicity. Thus, we consider the following problems
for the concrete parameters:

– RLWED where D is a uniform distribution over Sη
– RSIS with k = 2, ζ = max{2(γ1 − β), 4γ2 + 2 + 2d+1 · τ}
– RSIS with k = 1, ζ ′ = max{2(γ1 − β), 4γ2 + 2}

[NCC-Sign Non-cyclotomic]
We aim to choose conservative parameter sets whose classical Core-SVP esti-
mates are exceed 128, 192, and 256 at the three security levels, respectively.

Table 1: Some inert primes q for a given p

p q
1021 8348477, 8339581, 8333113
1429 8380087, 8376649, 8333131, 8332559
1913 8361623, 8343469, 8334383

– We can find enough list of candidate inert primes for each prime p, and find
suitable primes p and q in the list satisfying q ≡ 1 mod 2γ2. This condition is
needed for the correct verification and q−1 needs to have small even divisor.
In Table 1, we list some inert primes q for a given p. We choose suitable p and
q such that the expected number of repetitions in the rejection samplings is
not too large for efficiency.
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– The first parameter sets using η = 2 is given in Table 2, where their Core-
SVP estimates are 135, 194, and 261 bits at the three security levels, respec-
tively, and the LWE cost is higher than the SIS cost. We choose another
parameter sets using η = 1 given in Table 3 to balance the security of SIS
and LWE problems, where the SIS cost is only slightly higher than the LWE
cost.

– Actually, larger η makes the underlying LWE problem harder, at the cost
of less efficient rejection sampling since β = 2τη in the expected number of
the rejection sampling. In the second parameter set of η = 1, the expected
numbers of repetitions in the rejection samplings are 1.58, 1.74, and 1.98 at
the three security levels, respectively, which are reduced by half, compared
to the first parameter sets.

– In the Tables, Exp. reps. represents the expected numbers of repetitions in
rejection samplings. The expected numbers in the first parameter set is cal-
culated by e(p1β2+p2β1)(1/γ1+1/γ2) from the proposed SampleInBall algorithm
which will be analyzed in the next paragraph. In Table 2, they are calculated
by enβ(1/γ1+1/γ2) as in Dilithium.

– We estimate cost of NCC-Sign parameters in the Core-SVP model. LWE
and SIS security is estimated using the script from https://github.com/

pq-crystals/security-estimates. LWE cost by the lattice estimator is
calculated from https://github.com/malb/lattice-estimator.

– The use of η = 1 means that the ternary secret and error are used. It is known
that hybrid attacks are more effective to the ternary secret case. We provide
cost analysis of the second parameter sets against the hybrid attacks. For
security of the second parameter set against the hybrid attacks, we use the
code published in https://github.com/bencrts/hybrid_attacks, which
uses hybrid-decoding and hybrid-dual attacks. In Table 3, the model ‘usvp’
means that solving unique shortest vector problem is the best estimated
strategy.

– For quantum security, we utilize the simple estimation method that uses
classical security estimate with BKZ block size b. For this, we assume that
solving the shortest vector problem in a lattice of dimension b costs 20.292b

and 20.265b for classical and quantum attackers, respectively. Additionally, we
assume the square-root quantum attacker for the rest attack cost. Namely,
we estimate the quantum cost from the classical cost: 2a+0.292b (classical)
becomes 2a/2+0.265b (quantum).
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Table 2: Parameter set of NCC-Sign Non-cyclotomic (η = 2).

Parameter/Security Level 1c 3c 5c

p 1201 1607 2039
q 17279291 17305741 17287423

d [dropped bits from t] (2dτ < γ2) 12 13 13
τ [# of ±1’s in c] 32 32 32

challenge entropy [log
(
p
τ

)
+ τ ] 241 254 265

γ1 [y coefficient range] 219 219 219

γ2 [low-order rounding range] (q − 1)/70 (q − 1)/60 (q − 1)/58
(= 246847) (= 288429) (= 298059)

η [secret key range] 2 2 2
β 128 128 128

ω [max # of 1’s in hint] 80 80 80
Exp. reps. [≈ e(p1β2+p2β1)(1/γ1+1/γ2)] 2.5 3.02 3.95

Key/Signature Size
Public key size 1984 2443 3091
Secret key size 2800 3914 4940
Signature size 3186 4251 5385

SIS Hardness (Core-SVP)
BKZ block size b to break SIS 463 666 895
Best known classical bit cost 135 194 261
Best known quantum bit cost 122 176 237

LWE Hardness (Core-SVP)
BKZ block size b to break LWE 491 711 956

Best known classical bit cost 143 207 279
Best known quantum bit cost 130 188 253

LWE Estimator
Cost to SIS (BKZ b) 155.5 (484) 218.1 (697) 289.7 (941)
Quantum cost to SIS 135.3 192.0 256.8
Cost to LWE (BKZ b) 167.3 (483) 229.3 (704) 298.1 (949)
Quantum cost to LWE 141.1 198.4 262.0
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Table 3: Balanced parameter set of NCC-Sign Non-cyclotomic (η = 1)

Parameter/Security Level 1c,1 3c,1 5c,1

p 1201 1607 2039
q 17279291 17305741 17287423

d [dropped bits from t] (2dτ < γ2) 12 13 13
τ [# of ±1’s in c] 32 32 32

challenge entropy [log
(
p
τ

)
+ τ ] 241 254 265

γ1 [y coefficient range] 219 219 219

γ2 [low-order rounding range] (q − 1)/70 = (q − 1)/60 = (q − 1)/58 =
246847 288429 298059

η [secret key range] 1 1 1
β 64 64 64

ω [max # of 1’s in hint] 80 80 80
Exp. reps. [≈ enβ(1/γ1+1/γ2)] 1.58 1.74 1.98

pk size 1984 2443 3091
sk size 2703 3817 4843
sig size 3936 5255 6659

BKZ block-size b to break SIS 463 666 895
Best Known Classical bit-cost 135 194 261
Best Known Quantum bit-cost 122 176 237

Best Plausible bit-cost 96 138 185
BKZ block-size b to break LWE 450 656 884
Best Known Classical bit-cost 131 191 258
Best Known Quantum bit-cost 119 174 234

Core-SVP cost by Lattice estimator
BKZ block-size b to break LWE 442 642 863

Classical bit-cost 129.1 187.8 252.2
(method) (usvp) (dual hybrid) (dual hybrid)

Hybrid-decoding attack cost
BKZ block-size b to break LWE 445 655 890

Classical bit-cost 168.6 231.4 301.5
Hybrid-dual attack cost

BKZ block-size b to break LWE 430 621 842
Classical bit-cost 156.1 213.2 277.1
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Number of Repetitions. We analyze the probability of the rejection in Sign
algorithm using the proposed SampleInBall. We choose the challenge polyno-
mial c ∈ R having τ non-zero coefficients. For optimization, our optimized
SampleInBall algorithm chooses c ∈ R = Z[X]/(Xp −X − 1) differently: choose
two (or more) separate polynomials. Now, we calculate the probability that Step
12-13 pass in Sign algorithm and investigate optimization effects of our algorithm
for the suggested parameter sets.

Let κ be a challenge entropy, p1 = (p − 1)/2, and p2 = (p + 1)/2 with
p1 + p2 = p. First, choose τ1, τ2 such that

log

(
p1
τ1

)
+ τ1 + log

(
p2
τ2

)
+ τ2 > κ.

Then choose c = c2 + Xp2c1, where ci is a degree-(pi − 1) polynomial of co-
efficients in {−1, 0, 1} and the sum of absolute value of the coefficient is τi for
i = 1, 2. Now, consider the product c · s ∈ R, where s has also small coefficients
whose absolute value is not greater than η.

Let t = s ·Xi and tj be the j-th coefficient of t. Then, for i = 0, it is clear
that |tj | ≤ η for all j. For i = 1, it can be seen that |tj | ≤ η for all j except that
|t1| ≤ 2η. For i = 2, it can also be seen that |tj | ≤ η for all j but j = 1, 2 where
|t1|, |t2| ≤ 2η. Similarly, for t = s ·Xi, it can be seen that |tj | ≤ η for all j except
j = 1, 2, ..., i. Thus, for i < p2, |tj | ≤ η for j ≥ p2 and |tj | ≤ 2η for j < p2.

Now let t = s · c2 ∈ R and tj be the coefficient of t. Since c2 has a degree
less than p2 and has only τ2 non-zero coefficients, we know that |tj | ≤ τ2η for
j ≥ p2 and |tj | ≤ 2τ2η for j < p2. Let u = s · c ∈ R and uj be the coefficient of
u. Then it can be seen that |uj | ≤ (2τ1 + τ2)η for j ≥ p2 and |uj | ≤ 2(τ1 + τ2)η
for j < p2. Let β1 = 2(τ1 + τ2)η and β2 = (2τ1 + τ2)η. Let z be the signature
and zj be the coefficient of z. Then in the signature generation, we can check
|zj | < β1 for j < p2 and |zj | < β2 for j ≥ p2 instead of |zj | < β. Since β2 is
smaller than β1 and β1 is only slightly larger than β, the rejection probability
could become smaller. More concretely, the expected repetitions become

e(p1β2+p2β1)(1/γ1+1/γ2)

instead of epβ(1/γ1+1/γ2). In Table 4, we can see that this optimization offers
speed-up ranging from 9% to 24%, depending on the two parameter sets. The
numbers in parentheses of Exp. reps. are the expected numbers of repetitions
calculated by epβ(1/γ1+1/γ2) in [16, 25].

Table 4: Optimization effects for our parameter sets using new SampleInBall.

Parameter p τ κ p1, p2 β1, β2 Exp. reps. Speed-up
1c 1201 32 241 600,601 132,98 2.27 (2.5) 1.09
3c 1607 32 254 803,804 132,98 2.7 (3.02) 1.11
5c 2039 32 265 1019,1020 132,98 3.43 (3.95) 1.15
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[NCC-Sign Trinomial]
NCC-Sign Trinomial uses the polynomial ring Rq = Zq[X]/(Xn − Xn/2 + 1),
where ϕ(X) = Xn −Xn/2 + 1 is the m-th cyclotomic polynomial with m of the
form m = 2a · 3b, a, b ≥ 1 and n = ϕ(n) = m/3. We aim to choose conservative
parameter sets whose classical Core-SVP estimates are closest to or exceed 128,
192, and 256 at the three security levels, respectively. Depending on the com-
plexity of the LWE problem and the SIS problem at the required security levels,
we choose appropriate parameter sets so that the expected number of repetition
in the rejection samplings is not too large.

– The degree of the polynomial has of the form 2a · 3b which allows to choose
flexible parameters. Possible degrees of the polynomial of the form 2a ·3b are
512, 576, 648, 729, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, 1944,
2048, 2187, and 2304.

– We choose 1152, 1536, and 2304, depending on the required security levels,
where 1152 = 27 · 32 and 1536 = 29 · 3. For the 256-bit security level, we
choose two types of degrees as n = 2048 = 211 and n = 2304 = 28 · 32.

– Our modulus is chosen prime q that satisfies the NTT condition in NTTRU
KEM [13] using radix-3 and radix-2 NTT. NTTRU KEM [13] shows that
with appropriately chosen q, NTT over the ring Z7681[X]/(X768−X384 + 1)
is as fast as that over power-of-2 rings. In the case of n = 1152, 1536, and
2304, q is larger than 223 which lead to efficient rejection samplings. The
parameter set of n = 2048 has smaller output sizes than that with n = 2304,
but the number of repetitions in the rejection samplings is 2 times larger than
that of n = 2304. It is because that, compared to n = 2304, the modulus q
is smaller than 223 and the size of γ2 is reduced by half.

– The concrete parameter set is presented in Table 5. As in the case of non-
cyclotomic, LWE and SIS security is estimated using the script from https:

//github.com/pq-crystals/security-estimates. LWE cost by the lat-
tice estimator is calculated from https://github.com/malb/lattice-estimator.

Our parameter choice is different from Dilithium [16, 25] and NTRU Prime
KEM [6, 10].

– In NTRU Prime KEM [6, 10], the smallest p is 653 with q = 4621, but NCC-
Sign Non-cyclotomic needs a larger p corresponding to much larger q. The
main reason for this difference comes from the rejection sampling required in
the signature scheme while it is not needed in KEM. The rejection sampling
in signing makes the distribution of a signature independent from the secret
key. For efficient rejection sampling, the larger q the better: it lowers the
rejection probability. With larger q, we need larger p to thwart the lattice
attacks.

– While Dilithium uses a single prime q for the modulus at all security levels, q
in NCC-Sign is different at each security level since it needs an inert modulus
q for each prime p in NCC-Sign Non-cyclotomic and an appropriate q for
the use of incomplete NTT in NCC-Sign Trinomial.
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Table 5: Parameter set of NCC-Sign Trinomial.

Parameter/Security Level 1 3 5′ 5

n 1152 1536 2048 2304
q 8401537 8397313 8380417 8404993

d [dropped bits from t] (2dτ < γ2) 12 12 11 13
τ [# of ±1’s in c] 25 29 32 32

challenge entropy [log
(
p
τ

)
+ τ ] 195 232 265 271

γ1 [y coefficient range] 218 218 218 219

γ2 [low-order rounding range] 131274 131208 130944 262656
η [secret key range] 1 1 1 1

β 50 58 64 64
ω [max # of 1’s in hint] 80 80 80 80

Exp. reps. [≈ enβ(1/γ1+1/γ2)] 1.93 2.76 4.49 2.32
Key/Signature Size

pk size 1760 2336 3104 3200
sk size 2400 3168 3936 4992
sig size 2912 3872 5152 6080

SIS Hardness (Core-SVP)
BKZ block-size b to break SIS 462 671 963 1005
Best Known Classical bit-cost 135 196 281 293
Best Known Quantum bit-cost 122 177 255 266

LWE Hardness (Core-SVP)
BKZ block-size b to break LWE 451 652 934 1078
Best Known Classical bit-cost 131 190 273 315
Best Known Quantum bit-cost 119 172 247 285

Lattice estimator (Core-SVP)
BKZ block-size b to break LWE 452 652 930 1072

Classical bit-cost 132 190.7 271.7 313.3
(method) (usvp) (dual hybrid) (dual hybrid) (dual hybrid)
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[NCC-Sign vs. Dilithium.] We compare NCC-Sign and Dilithium in Table 6
in terms of the Core-SVP estimates for the LWE/SIS problems, output sizes
and the expected number of repetitions. The classical Core-SVP estimates of
Dilithium parameters are 123, 182, and 252 bits at the three security levels,
respectively. However, the classical Core-SVP estimates of NCC-Sign parameters
exceed or are close to 128, 192, and 256 bits at the three security levels and the
expected number of repetitions in the rejection samplings are smaller than that
of Dilithium.

Table 6: Comparison of Our Scheme and Dilithium

Scheme Core-SVP/Size 1 3 5 (5′)

SIS 123 186 265
LWE 123 182 252

Dilithium Repetitions 4.25 5.1 3.85
Public key size 1312 1952 2592
Signature size 2420 3293 4595

SIS 135 194 261
NCC-Sign LWE 143 207 279

Non-Cyclotomic Repetitions 2.27 2.7 3.43
(η = 2) Public key size 1984 2443 3091

Signature size 3186 4251 5385
SIS 135 194 261

NCC-Sign LWE 131 191 258
Non-Cyclotomic Repetitions 1.58 1.74 1.98

(η = 1) Public key size 1984 2443 3091
Signature size 3936 5255 6659

SIS 135 196 293 (281)
NCC-Sign LWE 131 190 315 (273)
Trinomial Repetitions 1.93 2.71 2.32 (4.49)

Public key size 1760 2336 3200 (3104)
Signature size 2912 3872 6080 (5152)
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3.4 Computational Efficiency

We measure the performance of each algorithm on Intel i9-10980XE @3.00 GHz
for the non-cyclotomic case and an Intel Xeon(R) Gold 6234 @3.3 GHz for
the trinomial case. The results presented in Table 7 and Table 8 include the
numbers of CPU cycles required by the key generation, signing, and verification.
Each result of signing, verification and key generation is a median of 10,000
measurements. The source code was developed on Ubuntu 22.04 LTS, compiled
using gcc 11.4.0, and optimization level -O3 applied. Hyperthreading and Turbo
Boost are switched off.

[NCC-Sign Non-cyclotomic] NCC-Sign Non-cyclotomic uses the NTT-based
polynomial multiplication for NTT-unfriendly ring, Zq[X]/(Xp −X − 1), as in
[24]. Table 7 shows the reference implementation results of the NCC-Sign Non-
cyclotomic.

Table 7: Performance of NCC-Sign Non-cyclotomic (Reference code).

Security Level 1c 3c 5c

KeyGen 979,979 1,001,022 1,034,193
Sign 7,269,506 8,752,038 10,719,703
Verify 1,863,350 1,884,647 1,926,235

Security Level 1c,1 3c,1 5c,1

KeyGen 994,925 979,361 1,036,603
Sign 5,125,748 5,591,804 6,251,357
Verify 1,862,862 1,904,330 1,926,090

[NCC-Sign Trinomial] NCC-Sign Trinomial uses the NTT-based polynomial
multiplication for NTT-friendly rings Zq[X]/(Xn−Xn/2 + 1) as in [13]. Table 8
shows the reference and AVX2-optimized implementation results of the NCC-
Sign Trinomial.

Table 8: Performance of NCC-Sign Trinomial and Dilithium.

Scheme Security Level 1 3 5
Performance (Reference Code, median cycles)

NCC-Sign-Trinomial
KeyGen 240,496 324,140 488,168
Sign 616,746 1,245,144 1,781,784
Verify 339,698 460,808 722,320

Dilithium
KeyGen 283,234 535,272 821,502
Sign 973,868 1,658,510 2,206,464
Verify 311,572 512,900 852,874

Performance (AVX2-optimized, median cycles)

NCC-Sign-Trinomial
KeyGen 164,184 218,772 335,440
Sign 290,396 553,728 838,432
Verify 158,138 200,242 340,382

Dilithium
KeyGen 73,720 126,556 198,860
Sign 178,436 289,862 353,008
Verify 79,534 128,602 199,366
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For comparison, we also present the implementation results of Dilithium.
The performance of both algorithms was measured under the same environ-
ment and conditions.9 Although NCC-Sign Trinomial requires larger degrees
than Dilithium for higher security, its reference implementation is faster than
Dilithium. However, our AVX2-optimized implementation is 1.8x to 2.2x times
slower. The improvement of SHAKE optimization and NTT optimization is sig-
nificant in the AVX2-optimized implementation of Dilithium, but the optimiza-
tion techniques cannot be applied to our scheme. We believe our AVX2 optimized
implementation of our scheme has room for improvement, especially in NTT op-
timization.

3.5 Application

We provide a pilot testing for feasibility in the CA system using NCC-Sign Trino-
mial as a digital signature scheme of CA and users. We measure the performance
of each algorithm in the CA system on an Intel(R) Core (TM) i9-13900K @2.99
GHz. Each result of each algorithm is an average of 10,000 measurements. As
seen in Fig. 1, key pair generation, certificate generation and certificate verifica-
tion take 0.0572 ms, 0.2077 ms, and 0.3012 ms, respectively. In the cert verify,
the system verifies the root CA’s signature and the CA’s signature.

Fig. 1: Performance of NCC-Sign Trinomial in the CA system.
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