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About PALOMA for Round 2

In this proposal, we propose PALOMA, a new code-based key encapsulation mechanism, which
is designed by combining an NP-hard SDP(Syndrome Decoding Problem)-based trapdoor with a
binary separable Goppa code and FO(Fujisaki-Okamoto) transformation. Cryptographic schemes
based on an SDP defined with a binary Goppa code have not been found to be vulnerable to
critical attacks, and the FO transformation ensures IND-CCA2 security in the ROM(Random Oracle
Model). The combination is highly regarded in cryptographic communities for its strong security
guarantees. PALOMA has a public key size of approximately 300KB or more due to its SDP-based
trapdoor nature. Furthermore, the key generation process, which involves generating the parity-
check matrix of the scrambled Goppa code, is relatively slow compared to other post-quantum
ciphers. However a primary role of post-quantum cryptography is to serve as an alternative to
current cryptosystems that are vulnerable to quantum computing attacks. Therefore, in post-
quantum cryptography, ensuring strong security guarantees is more important than efficiency.
Consequently, we have designed PALOMA with a focus on conservative security guarantees, while
ensuring that there is no significant degradation in application quality.

Description of Modifications from Round 1 to Round 2

Specification

The specifications of round 2 PALOMA differ as follows from round 1.

1R 2R Reason

GenPermMat P←
∏n−1
j=0 Pj,lj P← [ul0 | · · · | uln−1

]
Ensuring that P is sampling from

a uniform distribution

Secret key sk (L, g(X),S−1, rĈ) (L, g(X),S−1, rĈ , r)
A 256-bit string r, which is

independent of (L, g(X),S−1, rĈ),
is added for implicit rejection.

Security Proof

The security proof has been enhanced.

Performance

Data. The inclusion of r for implicit rejection in a secret key sk has resulted in an increase of
32-byte in the secret key size compared to the round 1.

Speed. Through optimization of the extended Patterson decoding in terms of algorithms, the
decapsulation speed has improved compared to round 1.
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Notations and Symbols

The notations used throughout this proposal are listed below.

{0, 1}l set of all l-bit strings
[i : j] integer set {i, i+ 1, . . . , j − 1}
a[i:j] substring ai‖ai+1‖ · · · ‖aj−1 of a bit string a = a0‖a1‖ · · ·
Fq finite field with q elements

Fm×nq set of all m× n matrices over a field Fq
Flq set of all l × 1 matrices over a field Fq, i.e., Flq := Fl×1q (v ∈ Flq is

considered as a column vector)
0l zero vector with length l
vI subvector (vj)j∈I ∈ F|I|q of a vector v = (v0, v1, . . . , vl−1) ∈ Flq

supp (v) index set of non-zero entries of a vector v = (v0, . . . , vl−1) ∈ Flq
wH(e) function that returns Hamming weight of a given vector e
Il l × l identity matrix
MI submatrix [mr,c]c∈I of a matrix M = [mr,c] where r and c are row index

and column index, respectively
MI×J submatrix [mr,c]r∈I,c∈J of a matrix M = [mr,c] where r and c are row

index and column index, respectively
[A | B] concatenated matrix of two matrices A and B
Pl set of all l × l permutation matrices

x
$←− X x uniformly chosen in a set X

gcd(f(X), g(X)) function that returns the monic greatest common divisor polynomial of
f(X) and g(X)

13
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Chapter 1

Introduction

We propose PALOMA, a new code-based KEM(Key Encapsulation Mechanism), which has the
following features:

− Trapdoor based on SDP(Syndrome Decoding Problem) with a binary separable (not irreducible)
Goppa code.

− IND-CCA2-secure KEM based on FO(Fujisaki-Okamoto) transformation.

− Parameter sets that ensure security strengths of 128, 192, and 256-bit.

1.1 Trapdoor

1.1.1 Syndrome Decoding Problem

SDP is a problem of finding the preimage error vector e with a specific Hamming weight for a given
random binary parity-check matrix H and a syndrome s(= He). In 1978, SDP was proven to be
NP-hard because it is equivalent to the 3-dimensional matching problem [3,15]. The McEliece and
Niederreiter cryptosystems are designed with a trapdoor based on SDP [23, 25]. However, because
the public key of an SDP-based trapdoor is a random-looking matrix, the public key is larger
than that of other ciphers. Therefore, there have been attempts to reduce the size of a public
key through cryptographic design using SDP-variant, such as rank metric-based SDP and quasi-
cyclic code-based SDP. However, SDP-variants assume the problem’s difficulty due to the lack of
guaranteed NP-hardness for SDP and the insufficient maturity of security analysis.

A primary role of post-quantum cryptography is to serve as an alternative to current cryp-
tosystems that are vulnerable to quantum computing attacks. Therefore, in post-quantum cryp-
tography, ensuring strong security guarantees is more important than efficiency. We think the
analysis method for SDP is sufficiently mature. Consequently, we have designed PALOMA based
on SDP with a focus on conservative security guarantees, while ensuring that there is no significant
degradation in application quality.

1.1.2 Niederreiter-type Code Scrambling (a.k.a. syndrome scrambling)

An SDP defined by a parity-check matrix H for a linear code C featuring an efficient decoding
algorithm is an easy problem. Therefore, to conceal the information required for decoding, C is
transformed into an equivalent code Ĉ that appears as a random code, and we define an SDP with
the parity-check matrix Ĥ of Ĉ. We call Ĉ a scrambled code of C. Consequently, if one knows both

15



16 CHAPTER 1. INTRODUCTION

the information required for decoding and the code transformation information, it is possible to
convert the SDP defined by Ĥ into the SDP defined by H. In this manner, the preimage error
vector can be determined.

In general, code-based cryptographic schemes use the information of a scrambled code Ĉ, which
is an equivalent code of the underlying code C, as a public key pk, while the decoding information for
C serves as a secret key sk. TheMcEliece scheme scrambles codewords, while the Niederreiter scheme
scrambles syndromes. Syndrome scrambling has the advantage of being shorter than codeword
scrambling and more intuitive for decoding, as syndromes serve as ciphertext. However, it has the
drawback of requiring higher computational complexity in converting input plaintext into specific
Hamming weight vectors. By the way, in the case of KEM, which does not involve encryption and
thus no message input, this conversion process is unnecessary. Therefore, PALOMA adopts the
syndrome scrambling approach.

Similar to the Niederreiter scheme, PALOMA uses the parity-check matrix Ĥ of a scrambled
code Ĉ defined by SHP. Here, H represents the parity-check matrix of C, while S and P denote an
invertible matrix and a permutation matrix, respectively. The P used in PALOMA is determined
by a uniformly chosen 256-bit seed. However, to reduce the size of a public key, the invertible
matrix S is derived from the reduced row echelon form procedure applied to HP, resulting in Ĥ
being in a systematic form, denoted as Ĥ = [In−k |M]. PALOMA uses the submatrix M of Ĥ as
a public key, similar to Classic McEliece [4]. Fig. 1.1 depicts the trapdoor framework of PALOMA.

C = [n, k,≥ 2t+ 1]2 Ĉ = [n, k,≥ 2t+ 1]2

H
(parity-check mat. of C)

Ĥ = SHP = [In−k |M]
(parity-check mat. of Ĉ)

decoding info. of C M

ê Decrypt ŝ
(=Ĥê)

Encrypt ê
(wH(ê)=t)

scrambling

scrambling
with P and S

S−1,P−1

n n−k n−k n

Figure 1.1: PALOMA: Trapdoor Framework

1.1.3 Binary Separable (not irreducible) Goppa Code

There are no critical attacks on cryptographic schemes based on an SDP defined with a binary
separable Goppa code [13], for example, McEliece scheme, which is the first code-based cipher
[23]. Many researchers have attempted to design code-based ciphers using various codes such as
GRS(General Reed-Solomon) and RM(Reed-Muller) to enhance efficiency in terms of public key size
and decryption speed. However, most of these schemes have been vulnerable to attacks due to their
structural properties, and the remaining ones still require more rigorous security proofs [24, 28].
Therefore, PALOMA adopts a binary separable Goppa code that has no attack even though it has
been studied for a long time with a conservative perspective.

A binary separable Goppa code C = [n, k,≥ 2t + 1]2 is defined by a support set L consisting
of n distinct elements in F2m and a separable Goppa polynomial g(X) ∈ F2m [X] with degree t,
for some integer m > 1. Typically, an irreducible polynomial is chosen as the Goppa polynomial,
as every irreducible polynomial is separable. However, since the algorithms generating irreducible
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polynomials are probabilistic, i.e., not guaranteed to have constant-time complexity. For a gener-
ation in constant-time, PALOMA defines L and g(X) with uniformly chosen n+ t elements in F2m

as follows: For a random 256-bit string r,

[α0, α1, . . . , αn−1︸ ︷︷ ︸
n elements for L

, αn, . . . , αn+t−1︸ ︷︷ ︸
t elements for g(X)

, αn+t, . . . , α2m−1]← Shuffle(F2m , r)

⇒ L← [α0, α1, . . . , αn−1], g(X)←
n+t−1∏
j=n

(X − αj).

After shuffling all F2m elements, the set of the first n elements is defined as a support set L
and the next t elements are the zeros of a Goppa polynomial g(X) with degree t. Note that
g(X) is separable but not irreducible in F2m [X], and we call the Goppa codes generated by the
separable polynomial g(X) totally decomposed Goppa codes [8]. The shuffling function, Shuffle, is
a deterministic modification of the Fisher-Yates shuffling algorithm. It shuffles the set using a 256-
bit string r. As a result, PALOMA efficiently generates a binary separable Goppa code in constant
time.

Patterson and Berlekamp-Massey are decoding algorithms commonly used for binary separable
Goppa codes [2,20,26]. Patterson shows better speed performance compared to Berlekamp-Massey.
However, it only operates when the Goppa polynomial g(X) is irreducible. Therefore, PALOMA
adapts the extended Patterson to handle cases where the Goppa polynomial is not irreducible [7].

1.2 KEM Structure

In general, IND-CCA2-secure schemes are constructed with OW-CPA-secure trapdoors and hash
functions that are treated as random oracles. The FO transformation is a method for designing IND-
CCA2-secure schemes, and it has been proven to be IND-CCA2-secure in ROM [12,14,30]. To achieve
IND-CCA2-secure KEM, PALOMA is designed based on the implicit rejection KEM 6⊥ = U 6⊥[PKE1 =

T[PKE0, G], H], among FO-like transformations proposed by Hofheinz et al. [14]. This is combined
with two modules: (1) T, which converts an OW-CPA-secure PKE0 into an OW-PCA(Plaintext
Checking Attack)-secure PKE1, and (2) U 6⊥, which converts it into an IND-CCA2-secure KEM.

1.3 Parameter Sets

The security of PALOMA is evaluated by the number of bit computations of generic attacks to SDP
as there are currently no known attacks on binary separable Goppa codes. ISD(Information Set
Decoding) is the most powerful generic attack of an SDP. The complexity of ISD has been improved
by modifications to the specific conditions for the information set [1, 18, 19, 21, 22, 27, 29] and
birthday-type search algorithms. PALOMA determines the level of security strength by evaluating
the computational complexity of the most effective attack.

Criteria for Parameter Set Selection. PALOMA provides three parameter sets: PALOMA-
128, PALOMA-192, and PALOMA-256, which correspond to security strength levels of 128-bit,
192-bit, and 256-bit, respectively. Each parameter set was carefully chosen to meet the following
conditions, ensuring efficient implementation.

(1) Binary separable Goppa codes are defined in F213 which can be used for PALOMA-128, PALOMA-
192, and PALOMA-256 simultaneously,

(2) n+ t ≤ 213 to define a support set and a Goppa polynomial,
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(3) n ≡ k ≡ t ≡ 0 (mod 64) for 64-bit word-aligned implementation, and

(4) k/n > 0.7 to reduce the size of a public key, and

(5) Enough security margin.



Chapter 2

Binary Separable Goppa Codes

In this chapter, we provide the definition of Goppa codes and the necessary mathematical back-
ground to understand the operating principles of PALOMA.

2.1 Binary Linear Codes

A k-dimensional binary linear code C of length n defined in a binary finite field F2 is a k-dimensional
subspace of the n-dimensional vector space Fn2 . It means that C is the solution space of the following
n− k linear equations.

h0,0X0 + h0,1X1 + · · · + h0,n−1Xn−1 = 0,

h1,0X0 + h1,1X1 + · · · + h1,n−1Xn−1 = 0,
...

hn−k−1,0X0 + hn−k−1,1X1 + · · · + hn−k−1,n−1Xn−1 = 0.

Therefore, a binary linear code C can be represented as follows.

C = {c ∈ Fn2 : Hc = 0n−k},

where 0n−k is a zero vector in Fn−k2 and

H = [hi,j ] :=

h0,0 h0,1 · · · h0,n−1
...

...
. . .

...
hn−k−1,0 hn−k−1,1 · · · hn−k−1,n−1

 ∈ F(n−k)×n
2 .

Note that all vectors are considered as column vectors in this proposal. The vector c ∈ C and the
matrix H are called a codeword and a parity-check matrix of C, respectively. For an error vector
e ∈ Fn2 , He ∈ Fn−k2 is called a syndrome of e.

The minimum distance d of C is defined by

d := min
c∈C\{0n}

wH(c).

A k-dimensional linear code C of length n defined in a finite field Fq is denoted by C = [n, k]q.
If the minimum distance d is given, C is denoted by C = [n, k, d]q

19
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2.2 Syndrome Decoding Problem

SDP is the problem of finding the preimage error vector with a specific Hamming weight of a given
syndrome. The formal definition of SDP is as follows.

Definition 2.1 (SDP). Given a parity-check matrix H ∈ F(n−k)×n
2 of a random binary linear code

C = [n, k]2, a syndrome s ∈ Fn−k2 and an integer t ∈ {1, . . . , n}, find the error vector e ∈ Fn2 that
satisfies He = s and wH(e) = t.

SDP has been proven to be an NP-hard problem due to its equivalence to the 3-dimensional
matching problem, as demonstrated in 1978 [3, 15].

Number of Roots of SDP. Suppose that there exist two distinct error vectors e0, e1 ∈ Fn2
satisfying He0 = He1 and wH(e0), wH(e1) ≤

⌊
d−1
2

⌋
, where d is the minimum distance of C. Then

we have the following contradiction since e0 − e1 ∈ C \ {0n}.

d ≤ |supp (e0 − e1) | ≤ |supp (e0) |+ |supp (e1) | ≤ 2

⌊
d− 1

2

⌋
≤ d− 1.

Therefore, the preimage error vector with Hamming weight less than or equal to
⌊
d−1
2

⌋
is unique.

Generally, in SDP-based schemes, the Hamming weight condition w of SDP is set to
⌊
d−1
2

⌋
for the

uniqueness of root.

2.3 Binary Separable Goppa Code

Binary separable Goppa codes are special cases of algebraic-geometric codes proposed by V. D.
Goppa in 1970 [13]. The formal definition of a binary separable Goppa code over F2 is as follows.

Definition 2.2 (Binary Separable Goppa code). For a set of distinct n(≤ 2m) elements L =

[α0, α1, . . . , αn−1] of F2m and a separable polynomial1 g(X) =
∑t
j=0 gjX

j ∈ F2m [X] of degree
t such that none of the elements of L are zeros of g(X), i.e., g(α) 6= 0 for all α ∈ L, a binary
separable Goppa code of length n over F2 is the subspace CL,g of Fn2 defined by

CL,g := {(c0, . . . , cn−1) ∈ Fn2 :

n−1∑
j=0

cj(X − αj)−1 ≡ 0 (mod g(X))},

where (X − α)−1 ∈ F2m [X] is the polynomial of degree t − 1 satisfying (X − α)−1(X − α) ≡
1 (mod g(X)). L and g(X) are referred to as a support set and a Goppa polynomial, respectively.
If g(X) is irreducible in F2m , then C is called a binary irreducible Goppa code.

1A polynomial g(X) ∈ Fq [X] is separable if its roots are distinct in an algebraic closure Fq .



2.4. EXTENDED PATTERSON DECODING 21

Parity-check Matrix. The parity-check matrix H of CL,g is defined with each coefficient of the
polynomial (X − αj)−1, and H can be decomposed into ABC, defined by

A :=


g1 g2 · · · gt
g2 g3 · · · 0
...

...
. . .

...
gt 0 · · · 0

 ∈ Ft×t2m , B :=


α0
0 α0

1 · · · α0
n−1

...
...

. . .
...

αt−20 αt−21 · · · αt−2n−1
αt−10 αt−11 · · · αt−1n−1

 ∈ Ft×n2m ,

and C :=


g(α0)

−1 0 · · · 0

0 g(α1)
−1 · · · 0

...
...

. . .
...

0 0 · · · g(αn−1)
−1

 ∈ Fn×n2m .

(2.1)

Since the matrix A is invertible (gt 6= 0), BC is another parity-check matrix of CL,g. Therefore,
as Goppa codes are subfield-subcodes of generalized Reed-Solomon codes (i.e., Alternant codes),
Berlekamp-Massey decoding can be applied. The Classic McEliece employs a binary Goppa code as
its parity-check matrix BC and utilizes Berlekamp-Massey decoding. However, PALOMA employs
a binary Goppa code as its parity-check matrix ABC and utilizes extended Patterson decoding.

Dimension and Minimum Hamming Distance. The dimension k and the minimum Ham-
ming distance d of CL,g satisfy k ≥ n−mt and d ≥ 2t+1. PALOMA set the dimension k of CL,g to
n−mt and the Hamming weight condition of the SDP to t to ensure the uniqueness of the root.

2.4 Extended Patterson Decoding

2.4.1 Patterson Decoding

Patterson decoding is the algorithm for a binary irreducible Goppa code C = [n, n−mt,≥ 2t+1]2,
not a separable Goppa code. However, it can be extended for a binary separable Goppa code [7,26].

Given a syndrome vector s ∈ Fmt2 , Patterson decoding procedure to find the preimage error
vector e ∈ Fn2 of s with wH(e) = t is as follows.

(Step 1) Parse the syndrome vector s ∈ Fmt2 as the vector s = (s0, . . . , st−1) ∈ Ft2m and convert s
into the syndrome polynomial s(X) =

∑t−1
j=0 sjX

j ∈ F2m [X] of degree t− 1 or less.

(Step 2) Derive the key equation for finding the error locator polynomial σ(X) =
∏
j∈supp(e)(X −

αj) ∈ F2m [X] of degree t.

(Step 3) Solve the key equation using the extended Euclidean algorithm.

(Step 4) Calculate σ(X) using a root of the key equation.

(Step 5) Find all zeros of σ(X) and compute the preimage error vector e.

In the above decoding procedure, the error locator polynomial σ(X) satisfies the following
identity.

σ(X)s(X) ≡ σ′(X) (mod g(X)). (2.2)

Note that σ(X) satisfying Eq. (2.2) is unique since the number of errors is t. In F2m [X], all
polynomials f(X) has two polynomials a(X) and b(X) such that f(X) = a(X)2 + b(X)2X,
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deg(a) ≤
⌊
t
2

⌋
, and deg(b) ≤

⌊
t−1
2

⌋
. Thus, if σ(X) = a(X)2 + b(X)2X, Eq. (2.2) can be rewritten

as follows.

b(X)2(1 +Xs(X)) ≡ a(X)2s(X) (mod g(X)). (2.3)

When g(X) is irreducible, s−1(X) and
√
s−1(X) +X exist in modulo g(X). Patterson decoding

uses the extended Euclidean algorithm to find a(X) and b(X) of the following key equation to
generate the error locator polynomial σ(X).

b(X)
√
(s−1(X) +X) ≡ a(X) (mod g(X)), deg(a) ≤

⌊
t

2

⌋
, deg(b) ≤

⌊
t− 1

2

⌋
. (2.4)

However, if g(X) is separable, the existence of s−1(X) cannot be guaranteed because g(X) and
s(X) are unlikely to be relatively prime.

2.4.2 Extended Patterson Decoding

To address this situation, extended Patterson decoding redefines the key equation Eq. (2.4).

New Key Equation. We define s̃(X), g1(X), g2(X) ∈ F2m [X] as follows.

s̃(X) := 1 +Xs(X), g1(X) := gcd(g(X), s(X)), g2(X) := gcd(g(X), s̃(X)).

Since gcd(s(X), s̃(X)) = gcd(s(X), s̃(X) mod s(X)) = gcd(s(X), 1) ∈ F2m \ {0}, we know

g | b2s̃+ a2s
g1|g
===⇒ g1 | b2s̃+ a2s

g1|s
===⇒ g1 | b2s̃

g1-s̃
===⇒ g1 | b2 ⇒ g1 | b,

g | b2s̃+ a2s
g2|g
===⇒ g2 | b2s̃+ a2s

g2|s̃
===⇒ g2 | a2s

g2-s
===⇒ g2 | a2 ⇒ g2 | a.

Therefore, the following five polynomials can be defined in F2m [X].

b1(X) :=
b(X)

g1(X)
, a2(X) :=

a(X)

g2(X)
, g12(X) :=

g(X)

g1(X)g2(X)
,

s̃2(X) :=
s̃(X)

g2(X)
, s1(X) :=

s(X)

g1(X)
.

Eq. (2.3) can be rewritten as follows.

b(X)2s̃(X) ≡ a(X)2s(X) (mod g(X))

⇒ b1(X)2g1(X)s̃2(X) ≡ a2(X)2g2(X)s1(X) (mod g12(X)).

Because gcd(g2(X), g12(X)), gcd(s1(X), g12(X)) is an element of F2m , we know gcd(g2(X)s1(X), g12(X)) ∈
F2m . Therefore, the inverse of g2(X)s1(X) modulo g12(X) exists, and we have the following equa-
tion.

b1(X)2u(X) ≡ a2(X)2 (mod g12(X)) where u(X) := g1(X)s̃2(X)(g2(X)s1(X))−1.

Since g12(X) is separable, u(X) has a square root modulo g12(X). Therefore, a(X) = a2(X)g2(X)

and b(X) = b1(X)g1(X) are obtained by calculating a2(X) and b1(X) that satisfy the following
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new key equation using the extended Euclidean algorithm.

b1(X)
√
u(X) ≡ a2(X) (mod g12(X)), (2.5)

deg(a2) ≤
⌊
t

2

⌋
− deg(g2), deg(b1) ≤

⌊
t− 1

2

⌋
− deg(g1).

Computation of
√
u(X) mod g12(X) in PALOMA. All zeros of the Goppa polynomial g(X)

used in PALOMA belong to F2m . Since all elements of F2m are roots of the equation X2m −X = 0

and g12(X) | X2m −X, we know
√
X = X2m−1

mod g12(X). A polynomial u(X) =
∑l
i=0 uiX

i ∈

F2m [X] of degree l can be written as u(X) =

(∑b l2c
i=0

√
u2iX

i

)2

+

(∑b l−1
2 c

i=0

√
u2i+1X

i

)2

X where
√
uj = (uj)

2m−1

for all j. Thus, the square root
√
u(X) of u(X) modulo g12(X) is

√
u(X) =

b l2c∑
i=0

√
u2iX

i

+

b
l−1
2 c∑
i=0

√
u2i+1X

i

√X mod g12(X). (2.6)

In summary, the operational process of extended Patterson decoding (Alg. 1) for PALOMA is
as follows.

(Step 1) Parse the syndrome vector s ∈ Fmt2 as the vector s = (s0, . . . , st−1) ∈ Ft2m and convert s
into the syndrome polynomial s(X) =

∑t−1
j=0 sjX

j ∈ F2m [X] of degree t− 1 or less. (Alg.
2)

(Step 2) Derive the new key equation Eq. (2.5) for finding the error locator polynomial σ(X) =∏
j∈supp(e)(X − αj) ∈ F2m [X] of degree t. (Alg. 3)

(Step 3) Solve the new key equation using the extended Euclidean algorithm. (Alg. 4)

(Step 4) Calculate σ(X) using a root of the key equation.

(Step 5) Find all zeros of σ(X) and compute the preimage error vector e. At this stage, to ensure
resistance against timing attacks, we find the solution through an exhaustive search.
(Alg. 5)

We give a SAGE code for the extended Patterson decoding in Appendix A.

Algorithm 1 Extended Patterson Decoding: RecoverErrVec

Input: A support set L, a Goppa polynomial g(X) and a syndrome vector s ∈ Fn−k2

Output: An error vector e ∈ Fn2 with wH(e) = t

1: procedure RecoverErrVec(L, g(X); s)
2: s(X)← ToPoly(s) . Alg. 2
3: v(X), g1(X), g2(X), g12(X)← ConstructKeyEqn(s(X), g(X)) . Alg. 3
4: (a2(X), b1(X))← SolveKeyEqn(v(X), g12(X),

⌊
t
2

⌋
− deg(g2),

⌊
t−1
2

⌋
− deg(g1)) . Alg. 4

5: a(X), b(X)← a2(X)g2(X), b1(X)g1(X)
6: σ(X)← a(X)2 + b(X)2X
7: e← FindErrVec(σ(X), L) . Alg. 5
8: return e
9: end procedure
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Algorithm 2 Extended Patterson Decoding: ToPoly

Input: A syndrome vector s = (s0, s1, . . . , smt−1) ∈ Fmt2

Output: A syndrom polynomial s(X) ∈ F2m [X]

1: procedure ToPoly(s)
2: wj ←

∑m−1
i=0 smj+iz

i ∈ F2m for j = 0, 1, . . . , t− 1

3: s(X)←
∑t−1
j=0 wjX

j ∈ F2m [X]
4: return s(X)
5: end procedure

Algorithm 3 Extended Patterson Decoding: ConstructKeyEqn

Input: A syndrome polynomial s(X) and a Goppa polynomial g(X)
Output: v(X), g1(X), g2(X), g12(X) ∈ F2m [X]

1: procedure ConstructKeyEqn(s(X), g(X))
2: s̃(X)← 1 +Xs(X)
3: g1(X), g2(X)← gcd(g(X), s(X)), gcd(g(X), s̃(X)) . g1(X), g2(X) are monic.
4: g12(X)← g(X)

g1(X)g2(X)

5: s̃2(X), s1(X)← s̃(X)
g2(X) ,

s(X)
g1(X)

6: u(X)← g1(X)s̃2(X)(g2(X)s1(X))−1 mod g12(X)
7: v(X)←

√
u(X) mod g12(X) . Eq. (2.6)

8: return v(X), g1(X), g2(X), g12(X)
9: end procedure

Algorithm 4 Extended Patterson Decoding: SolveKeyEqn

Input: v(X), g12(X), dega, degb
Output: (a2(X), b1(X)) s.t. b1(X)v(X) ≡ a2(X) (mod g12(X)) and deg(a2) ≤ dega,deg(b1) ≤

degb

1: procedure SolveKeyEqn(v(X), g12(X), dega, degb)
2: η0(X), η1(X)← v(X), g12(X)
3: ρ0(X), ρ1(X)← 1, 0
4: while η1(X) 6= 0 do
5: q(X), r(X)← div(η0(X), η1(X)) . η0(X) = η1(X)q(X) + r(X), 0 ≤ deg(r) < deg(η1)
6: η0(X), η1(X)← η1(X), r(X)
7: ρ2(X)← ρ0(X)− q(X)ρ1(X)
8: ρ0(X), ρ1(X)← ρ1(X), ρ2(X)
9: if deg(η0) ≤ dega and deg(ρ0) ≤ degb then

10: break
11: end if
12: end while
13: return (η0(X), ρ0(X))
14: end procedure
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Algorithm 5 Extended Patterson Decoding: FindErrVec

Input: An error locator polynomial σ(X) and a support set L
Output: An error vector e ∈ Fn2
1: procedure FindErrVec(σ, L)
2: e = (e0, . . . , en−1)← (0, 0, . . . , 0)
3: for j = 0 to n− 1 do
4: if σ(αj) = 0 then
5: ej ← 1
6: end if
7: end for
8: return e
9: end procedure
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Chapter 3

Specification

3.1 Parameter Sets

PALOMA consists of three parameter sets: PALOMA-128, PALOMA-192, and PALOMA-256 offering
128/192/256-bit security strength, respectively. Tab. 3.1 shows each parameter set.

Table 3.1: Parameter Sets of PALOMA

Parameter set n t k(= n−mt) m

PALOMA-128 3904 64 3072 13

PALOMA-192 5568 128 3904 13

PALOMA-256 6592 128 4928 13

In Tab. 3.1, the parameters n, t, and k denote the length of a codeword, the number of
correctable errors, and the dimension of a binary Goppa code, respectively. The parameterm(= 13)

represents the degree of a binary field extension. The binary extension field F213(= F2m) used in
PALOMA is defined by an irreducible polynomial f(z) = z13 + z7 + z6 + z5 + 1 ∈ F2[z], i.e.,
F213 = F2[z]/ 〈f(z)〉. Each parameter set satisfies n+ t ≤ 2m and k = n−mt.

Representation of the parameter set. Since all three parameters are set to m = 13 and k is
determined by n and t, the parameter set is denoted as (n, t).

3.2 Utility Functions

3.2.1 Array Shuffling: Shuffle

Shuffle parses a 256-bit seed r = r0‖r1‖ · · · ‖r255 as sixteen 16-bit non-negative integers r̂0, . . . , r̂15
where r̂w =

∑15
j=0 r16w+15−j2

j < 216 and uses each as a random integer required in the Fisher-Yates
shuffle [17]. Alg. 6 shows the process of Shuffle in detail. Section 5.1.1.1 gives the security analysis
of Shuffle.

27
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Algorithm 6 Shuffle: Array Shuffling with a 256-bit Seed

Input: An array A = [A0, A1, . . . , Al−1] and a 256-bit seed r ∈ {0, 1}256
Output: A shuffled array A
1: procedure Shuffle(A, r)
2: for j = 0 to 15 do
3: r̂j ← BitToInt(r[16j:16(j+1)]) . BitToInt(r0‖ · · · ‖r15) :=

∑15
j=0 r15−j2

j < 216

4: end for
5: w ← 0
6: for i← |A| − 1 downto 1 do . |A| = l, the number of elements of A
7: j ← r̂w mod i+ 1
8: Ai, Aj ← Aj , Ai . Swapping of Ai and Aj
9: w ← w + 1 mod 16

10: end for
11: return A
12: end procedure

3.2.2 Generation of Permutation Matrix: GenPermMat

GenPermMat takes a 256-bit string and performs Shuffle (Alg. 6) with it. It then returns the n×n
permutation matrix P and its inverse P−1 corresponding to the shuffled array. Alg. 7 illustrates
the operation process of GenPermMat.

Algorithm 7 GenPermMat: Generating a n-bit Permutation with a 256-bit Seed

Input: A permutation size n and a 256-bit seed r ∈ {0, 1}256
Output: An n× n permutation matrix P,P−1 ∈ Fn×n2

1: procedure GenPermMat(n, r)
2: [l0, l1, . . . , ln−1]← Shuffle([0, 1, . . . , n− 1], r) . Alg. 6
3: P← [ul0 | ul1 | · · · | uln−1

] ∈ Fn×n2 . uj is the standard unit column vector such that
supp (uj) = j

4: return P,P−1

5: end procedure

3.2.3 Vector Permutation: Perm and PermInv

Perm and PermInv substitute a vector v ∈ Fn2 with a 256-bit string r and permutation matrices P
and P−1 generated by GenPermMat. The substitution is carried out by replacing the v with Pv
and P−1v, respectively. Alg. 8 illustrates these processes.

Algorithm 8 Perm and PermInv: Vector Permutation

Input: A vector v ∈ Fn2 and r ∈ {0, 1}256
Output: A vector v ∈ Fn2
1: procedure Perm(v, r)
2: P,P−1 ← GenPermMat(n, r)
3: v ← Pv
4: return v
5: end procedure

Input: A vector v ∈ Fn2 and r ∈ {0, 1}256
Output: A vector v ∈ Fn2
1: procedure PermInv(v, r)
2: P,P−1 ← GenPermMat(n, r)
3: v ← P−1v
4: return v
5: end procedure
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3.2.4 Generation of Error Vector: GenErrVec

GenErrVec generates a t-Hamming weight error vector e ∈ Fn2 by shuffling an array [0, 1, . . . , n− 1]

using a 256-bit seed r and selecting the upper t elements to form the support set. Alg. 9 illustrates
the process.

Algorithm 9 GenErrVec: Generating a t-Hamming weight Error Vector with a 256-bit Seed

Input: A vector length n, a Hamming weight t, and a 256-bit seed r ∈ {0, 1}256
Output: An error vector e = (e0, e1, . . . , en−1) ∈ Fn2 with wH(e) = t

1: procedure GenErrVec(n, t, r)
2: [l0, l1, . . . , ln−1]← Shuffle([0, 1, . . . , n− 1], r)
3: e = (e0, e1, . . . , en−1)← (0, 0, . . . , 0)
4: for j = 0 to t− 1 do
5: elj ← 1
6: end for
7: return e . supp (e) = {l0, l1, . . . , lt−1}
8: end procedure

3.2.5 Random Oracles: ROG, ROH

PALOMA is a KEM designed in the random oracle model. PALOMA uses two random oracles,
namely ROG and ROH , which are defined using the Korean KS standard hash function LSH-
512 [16]. Alg. 10 presents the definition.

Algorithm 10 ROG, ROH : Random Oracles

Input: A bit string x ∈ {0, 1}∗

Output: A 256-bit string r ∈ {0, 1}256

1: procedure ROG(x)
2: return LSH("PALOMAGG"‖x)[0:256]
3: end procedure

1: procedure ROH(x)
2: return LSH("PALOMAHH"‖x)[0:256]
3: end procedure

3.3 Key Generation

The trapdoor of PALOMA is designed with SDP based on a scrambled code Ĉ of a binary separable
Goppa code C. The public key is the submatrix of the systematic parity-check matrix of Ĉ, and
the secret key is the necessary information for decoding and scrambling of C. Alg. 11 presents the
pseudo code for the key generation GenKeyPair of PALOMA, and the detailed processes of each
subroutine are outlined in Section 3.3.1, Section 3.3.2, and Section 3.3.3.

3.3.1 Generation of a random binary separable Goppa code C
GenRandGoppaCode generates a support set L in F213 and a Goppa polynomial g(X) ∈ F213 [X] for
a Goppa code C using a uniformly chosen 256-bit string rC , and computes the parity-check matrix
H ∈ F13t×n

2 of C. The operation process is outlined below, and Alg. 12 presents the pseudo code
of it.

(Step 1) A 256-bit string rC is uniformly chosen.
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Algorithm 11 PALOMA: Generation of Key Pair

Input: Parameter set (n, t)
Output: A public key pk and a secret key sk
1: procedure GenKeyPair(n, t)
2: rC , L, g(X),H← GenRandGoppaCode(n, t) . Alg. 12
3: rĈ ,S

−1, Ĥ← GenScrambledCode(H) . Alg. 13
4: pk ← Ĥ[n−k:n]

5: r
$←− {0, 1}256 . r is used in the implicit rejection case

6: sk ← (L, g(X),S−1, rĈ , r) . or sk ← (rC , rĈ , r) ∈ {0, 1}
768

7: return pk and sk
8: end procedure

(Step 2) Reorder elements of F213 with the rC using Shuffle. (Alg. 6)

[α0, . . . , α213−1]← Shuffle(F213 = [0, 1, z, z + 1, z2, . . . , z12 + · · ·+ 1]︸ ︷︷ ︸
lexicographic order

, rC).

Note that we consider a field element α =
∑12
j=0 ajz

j ∈ F213 as an integer
∑12
j=0 aj2

j ∈ Z
for using Shuffle.

(Step 3) Set the support set L = [α0, . . . , αn−1], and set the separable Goppa polynomial g(X) =∑t
j=0 gjX

j =
∏n+t−1
j=n (X − αj) ∈ F213 [X] of degree t.

L← [α0, . . . , αn−1], g(X)←
n+t−1∏
j=n

(X − αj).

(Step 4) Compute the parity-check matrix H = ABC ∈ Ft×n213 where A,B,C are defined in Eq.
(2.1).

(Step 5) Parse H as a matrix in F13t×n
2 as follows.

H = [hr,c] ∈ Ft×n213 ⇒ H = [h0 | h1 | · · · | hn−1] ∈ F13t×n
2 ,

where hc := (h
(0)
0,c, . . . , h

(12)
0,c , h

(0)
1,c, . . . , h

(12)
1,c , . . . , h

(12)
t−1,c) ∈ F13t

2 and h
(j)
r,c ∈ F2 such that

hr,c =
∑12
j=0 h

(j)
r,czj ∈ F213 for r ∈ [0 : t] and c ∈ [0 : n].

3.3.2 Generation of a scrambled code Ĉ of C
GenScrambledCode scrambles the parity-check matrix H below, and Alg. 13 presents the pseudo
code of it.

(Step 1) A 256-bit string rĈ is uniformly chosen.

(Step 2) Generate a n× n random permutation matrix P and its inverse P−1 using GenPermMat
and rĈ . (Alg. 7)

(Step 3) Compute HP.

(Step 4) Compute the reduced row echelon form Ĥ of HP. If Ĥ[0:n−k] 6= In−k, back to (Step 1).
Note that Pr[Ĥ[0:n−k] = In−k] > 0.288788.
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Algorithm 12 GenRandGoppaCode: Generating a Random Binary Separable Goppa Code

Input: Parameter set (n, t)
Output: A 256-bit string rC ∈ {0, 1}256, a support set L, a Goppa poly. g(X) and a parity-check

matrix H of CL,g
1: procedure GenRandGoppaCode(n, t)
2: rC

$←− {0, 1}256
3: [α0, . . . , α213−1]← Shuffle(F213 , rC) . Alg. 6
4: L← [α0, . . . , αn−1] . Support set

5: g(X)←
n+t−1∏
j=n

(X − αj) . Goppa polynomial

6: H = [hr,c]← ABC ∈ Ft×n213 . A,B,C are defined in Eq. (2.1)
7: Parse H as a matrix in F13t×n

2 . Parity-check matrix
8: return rC , L, g(X), H
9: end procedure

Algorithm 13 GenScrambledCode: Scrambling a Goppa code

Input: A parity-check matrix H ∈ Fmt×n2 of C
Output: A 256-bit string rĈ ∈ {0, 1}

256, an invertible matrix S−1 ∈ Fmt×mt2 , and a parity-check
matrix Ĥ ∈ Fmt×n2 of Ĉ

1: procedure GenScrambledCode(H)
2: rĈ

$←− {0, 1}256

3: P,P−1 ← GenPermMat(n, rĈ) . Alg. 7
4: Ĥ← RREF(HP)

5: if Ĥ[0:n−k] 6= In−k then
6: Go back to line 2.
7: end if
8: S−1 ← (HP)[0:n−k]

9: return rĈ ,S
−1, Ĥ

10: end procedure

(Step 5) Define the invertible matrix S−1 := (HP)[0:n−k] ∈ F(n−k)×(n−k)
2 . Note that Ĥ = SHP.

3.3.3 Define a public key pk and a secret key sk

Public key. The public operation of PALOMA involves computing the syndrome(image) of a
given error vector in the scrambled code Ĉ. Therefore PALOMA defines the submatrix Ĥ[n−k:n] of
the systematic form parity-check matrix Ĥ as a public key pk.

pk ← Ĥ[n−k:n].

Secret key. The secret operation of PALOMA involves computing the error vector(preimage)
of a given syndrome. Therefore PALOMA defines the decoding information L and g(X) for the
Goppa code C and scrambling information rĈ and S−1 for the scrambled code Ĉ as a secret key
sk. Additionally, PALOMA includes 256-bit string r for implicit rejection, generated independently
with C and Ĉ.

sk ← (L, g(X),S−1, rĈ , r).
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Remark. The S−1 of a secret key can be derived from the (L, g(X), rĈ). Both L and g(X) are
generated by the rC , used in GenRandGoppaCode. Therefore the secret key sk can be defined as a
768-bit string (rC , rĈ , r) ∈ {0, 1}

768.

sk ← (rC , rĈ , r).

3.4 Encryption and Decryption

Encryption. The encryption Encrypt of PALOMA involves computing the syndrome ŝ(ciphertext)
of a given t-Hamming weight error vector ê(plaintext) in the scrambled code Ĉ using a public key
pk = Ĥ[n−k:n]. The process is outlined below.

(Step 1) Retrieve the parity-check matrix Ĥ = [In−k | Ĥ[n−k:n]] ∈ F(n−k)×n
2 of the scrambled

code Ĉ from the public key pk = Ĥ[n−k:n] ∈ F(n−k)×k
2 .

(Step 2) Compute the (n−k)-bit syndrome ŝ(= Ĥê) of an n-bit error vector input ê with wH(ê) =

t, and return ŝ as the ciphertext of ê.

ŝ(= Ĥê)← Encrypt(pk; ê).

Decryption. The decryption Decrypt of PALOMA involves computing the t-Hamming weight
error vector ê(plaintext) of a given syndrome ŝ(ciphertext) in the scrambled code Ĉ using a secret
key sk = (L, g(X),S−1, rĈ , r). The process is outlined below.

(Step 1) Convert the syndrome ŝ in Ĉ into the syndrome s(= S−1ŝ) in C by multiplying the secret
key S−1.

(Step 2) Recover the error vector e corresponding to s with the secret key L, g(X), which are
decoding information of C. At that stage, we use the extended Patterson decoding intro-
duced by Section 2.4.2. (Alg. 1)

(Step 3) Return the error vector ê(= P−1e) of Ĉ obtained from e and the permutation matrix
P−1 generated by the secret key rĈ . (Alg. 8)

Alg. 14 shows the pseudo codes of the encryption and the decryption, and Fig. 3.1 depicts
these operations.

pk = Ĥ[n−k:n] sk

S−1 L, g(X) rĈ

Ĥ
(=SHP)

= [In−k | Ĥ[n−k:n]] × ŝ
(=SHPê)

× RecoverErrVec PermInv

ê
(wH(ê)=t)

ê

Encrypt

HPê

Decrypt

Pê

Figure 3.1: PALOMA: Encryption and Decryption
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Algorithm 14 PALOMA: Encryption and Decryption

Input: A public key pk = Ĥ[n−k:n] ∈ F(n−k)×k
2 and an error vector ê ∈ Fn2 with wH(ê) = t

Output: A syndrome vector ŝ ∈ Fn−k2

1: procedure Encrypt(pk = Ĥ[n−k:n]; ê)
2: Ĥ← [In−k | Ĥ[n−k:n]] ∈ F(n−k)×n

2

3: ŝ← Ĥê ∈ Fn−k2

4: return ŝ
5: end procedure

Input: A secret key sk = (L, g(X),S−1, rĈ , r) and a syndrome vector ŝ ∈ Fn−k2

Output: An error vector ê ∈ Fn2 with wH(ê) = t

1: procedure Decrypt(sk = (L, g(X),S−1, rĈ , r); ŝ)
2: s← S−1ŝ
3: e← RecoverErrVec(L, g(X); s) . Alg. 1
4: ê← PermInv(e, rĈ) . ê = P−1e, Alg. 8
5: return ê
6: end procedure

3.5 Encapsulation and Decapsulation

Encapsulation. Encap takes a public key pk as an input and returns a key κ and the ciphertext
c = (r̂, ŝ) of κ. The procedure is as follows. (Alg. 15)

(Step 1) A 256-bit string r∗ is uniformly chosen.

(Step 2) Generate a random n-bit error vector e∗ with wH(e∗) = t using GenErrVec and r∗. (Alg.
9)

(Step 3) Query e∗ to ROG and obtain a 256-bit string r̂. (Alg. 10)

(Step 4) Compute ê(= Pe∗) = Perm(e∗, r̂). (Alg. 8)

(Step 5) Obtain the (n− k)-bit syndrome ŝ of ê using Encrypt with pk. (Alg. 14)

(Step 6) Query (e∗‖r̂‖ŝ) to ROH and obtain a 256-bit key κ. (Alg. 10)

(Step 7) Return a ciphertext c = (r̂, ŝ) and a key κ.

Decapsulation. Decap returns the key κ when given the secret key sk and the ciphertext c =
(r̂, ŝ) as inputs. The process is as follows. (Alg. 15)

(Step 1) Obtain the error vector ê by entering ŝ and sk into the Decrypt. (Alg. 14)

(Step 2) Compute e∗(= P−1ê) = PermInv(ê, r̂). (Alg. 8)

(Step 3) Query e∗ to the ROG and obtain a 256-bit string r̂′. (Alg. 10)

(Step 4) Generate the error vector ẽ using GenErrVec with the secret key r. (Alg. 9)

(Step 5) If r̂′ = r̂, then query (e∗‖r̂‖ŝ) to the random oracle ROH , and if not, query (ẽ‖r̂‖ŝ) to
ROH . Return the received bit string from ROH as a key κ. (Alg. 10)

Fig. 3.2 outlines Encap and Decap.
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r∗
(uniformly chosen)

Perm ê
(=Pe∗)

GenErrVec e∗
(wH(e∗)=t)

ROG r̂ Encrypt pk

ROH

κ c = (r̂, ŝ) ŝ

(a) κ, c = (r̂, ŝ)← Encap(pk)

sk
=(L,g(X),S−1,rĈ,r)

c = (r̂, ŝ)

Decrypt r̂′
?
= r̂ ROH κ

GenErrVec ê PermInv r̂′ ROH κ

ẽ e∗
(=P−1ê)

ROG

r

L, g(X),S−1, rĈ

r̂

ŝ r̂

YES

NO

(b) κ← Decap(sk; c = (r̂, ŝ))

Figure 3.2: PALOMA: Encapsulation and Decapsulation
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Algorithm 15 PALOMA: Encapsulation and Decapsulation

Input: A public key pk ∈ {0, 1}(n−k)×k

Output: A ciphertext c = (r̂, ŝ) ∈ {0, 1}256 × {0, 1}n−k and a key κ ∈ {0, 1}256

1: procedure Encap(pk)
2: r∗

$←− {0, 1}256
3: e∗ ← GenErrVec(n, t, r∗) . wH(e∗) = t

4: r̂ ← ROG(e∗) . r̂ ∈ {0, 1}256
5: ê← Perm(e∗, r̂) . ê = Pe∗

6: ŝ← Encrypt(pk; ê) . ŝ ∈ {0, 1}n−k

7: κ← ROH(e∗‖r̂‖ŝ) . κ ∈ {0, 1}256
8: return c = (r̂, ŝ) and κ
9: end procedure

Input: A secret key sk = (L, g(X),S−1, rĈ , r) and a ciphertext c = (r̂, ŝ)

Output: A key κ ∈ {0, 1}256

1: procedure Decap(sk = (L, g(X),S−1, rĈ , r); c = (r̂, ŝ))
2: ê← Decrypt(sk; ŝ) . wH(ê) = t
3: e∗ ← PermInv(ê, r̂) . e∗ = P−1ê
4: r̂′ ← ROG(e∗)
5: ẽ← GenErrVec(n, t, r)
6: if r̂′ 6= r̂ then
7: κ← ROH(ẽ‖r̂‖ŝ) . implicit rejection
8: else
9: κ← ROH(e∗‖r̂‖ŝ)

10: end if
11: return κ
12: end procedure
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Chapter 4

Performance

In this chapter, we provide the performance analysis result of PALOMA.

4.1 Description of C Implementation

4.1.1 Data Structure for F213 [X]

The elements of F213 = F2[z]/ 〈f(z)〉 are stored in the 2-byte data type, where f(z) = z13 + z7 +

z6 + z5 +1. The data structure for a field element a(z) =
∑12
i=0 aiz

i is defined as 03‖a12‖ · · · ‖a0 ∈
{0, 1}16. A polynomial a(X) =

∑l
i=0 aiX

i ∈ F213 [X] of degree l is stored in 2(l + 1)-byte as
a0‖ · · · ‖al ∈ ({0, 1}16)l+1.

4.1.2 Arithmetics in F213

PALOMA uses the pre-computed tables for multiplication, squaring, square rooting, and inversion
in F213 .

Multiplication. To store the multiplication of all pairs in F213 , a table of 128MB (=2×226-byte)
is required. In order to reduce the size of the table, PALOMA employs the multiplication of three
smaller tables. Every field element a(z) ∈ F213 can be expressed as a1(z)z7+a0(z) where deg(a0) ≤
6 and deg(a1) ≤ 5. So, the multiplication of a(z) = a1(z)z

7 + a0(z) and b(z) = b1(z)z
7 + b0(z) in

F213 can be computed as follows.

a(z)b(z) mod f(z) =
(
a1(z)b1(z)z

14 mod f(z)
)
+
(
a1(z)b0(z)z

7 mod f(z)
)

+
(
a0(z)b1(z)z

7 mod f(z)
)
+ (a0(z)b0(z) mod f(z)) .

Thus, the multiplication can be calculated using the following three tables MUL00 : {0, 1}7 ×
{0, 1}7 → {0, 1}16, MUL10 : {0, 1}6 × {0, 1}7 → {0, 1}16, and MUL11 : {0, 1}6 × {0, 1}6 → {0, 1}16

for all possible pairs.

MUL00[a0, b0] := a0(z)b0(z) mod f(z),

MUL10[a1, b0] := a1(z)b0(z)z
7 mod f(z),

MUL11[a1, b1] := a1(z)b1(z)z
14 mod f(z).

Note that a0(z)b1(z)z7 mod f(z) is computed using the table MUL10.

37
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Squaring, Square root, and Inversion. Tables SQU, SQRT, and INV store the results of the
squares, the square roots, and the inverses, respectively, for all elements in F213 . Note that we
define the inverse of 0 as 0. Tab. 4.1 presents the size of pre-computed arithmetic tables.

Table 4.1: Pre-computed Tables for Arithmetics in F213 used in PALOMA

Table Size (in bytes) Description

MUL00 32,768 (= 214 × 2) a0(z)b0(z) mod f(z), deg(a0),deg(b0) < 7

MUL10 16,384 (= 213 × 2) a1(z)b0(z)z
7 mod f(z), deg(a1) < 6, deg(b0) < 7

MUL11 8,192 (= 212 × 2) a1(z)b1(z)z
14 mod f(z), deg(a1),deg(b1) < 6

SQU 16,384 (= 213 × 2) a(z)2 mod f(z), deg(a) < 13

SQRT 16,384 (= 213 × 2)
√
a(z) where a(z) = (

√
a(z))2 mod f(z), deg(a) < 13

INV 16,384 (= 213 × 2) a(z)−1 where 1 = a(z)
−1
a(z) mod f(z), deg(a) < 13

Total 106,496 (= 104 KB)

4.2 Data Size

We determine the size of a public key pk = Ĥ[n−k:n], a secret key sk = (L, g(X),S−1, rĈ , r), and
a ciphertext c = (r̂, ŝ) in terms of byte strings. Each size in bytes is computed by the following
formula.

bytelen(pk) = bytelen(Ĥ[n−k:n]) =

⌈
(n− k)k

8

⌉
,

bytelen(sk) = bytelen(L) + bytelen(g(X)) + bytelen(S−1) + bytelen(rĈ) + bytelen(r)

= 2n+ 2t+

⌈
(n− k)2

8

⌉
+ 32 + 32,

bytelen(c) = bytelen(r̂) + bytelen(ŝ) = 32 +

⌈
n− k
8

⌉
.

Note that a monic Goppa polynomial g(X) ∈ F213 [X] of degree t is stored in 2t-byte. Tab. 4.2
shows the sizes of a public key, a secret key, and a ciphertext of PALOMA. As stated in Section
3.3.3, the size of a secret key can be 768-bit. However, using such a key size may adversely affect
the decryption speed performance.

Tab. 4.3 shows the data size comparison among the NIST competition round 4 code-based
ciphers and PALOMA. The data size of PALOMA is similar to Classic McEliece because of the
usage of SDP-based trapdoor. Compared to HQC and BIKE, the size of a public key and a secret
key is relatively large. However, the size of the ciphertext which is the actual transmitted value is
smaller than HQC and BIKE.

4.3 Speed

PALOMA is implemented in ANSI C. A speed benchmark was performed on the following two
platforms using the Apple clang with the -O3 optimization option:

(Platform 1) macOS, Sonoma 14.1.2, Apple M1 Max, 32GB RAM, Apple clang version 15.0.0
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Table 4.2: Data Size Performance of PALOMA (in bytes)

PALOMA-128 PALOMA-192 PALOMA-256

Public key pk Ĥ[n−k:n] ∈ F(n−k)×k
2 319,488 812,032 1,025,024

Secret key sk

L ∈ Fn213 7,808 11,136 13,184

g(X) ∈ F213 [X] 128 256 256

S−1 ∈ F(n−k)×(n−k)
2 86,528 346,112 346,112

rĈ ∈ {0, 1}
256 32 32 32

r ∈ {0, 1}256 32 32 32

Total 94,528 357,568 359,616

Ciphertext c
r̂ ∈ {0, 1}256 32 32 32

ŝ ∈ Fn−k2 104 208 208

Total 136 240 240

Key κ κ ∈ {0, 1}256 32 32 32

(Platform 2) macOS, Sonoma 14.2.1, Apple M3, 8GB RAM, Apple clang version 14.0.3

The results are shown in Tab. 4.4 and Tab. 4.5. We conducted 100 iterations each and mea-
sured the average value of a single operation, and measured the round 4 code presented by the
Classic McEliece developers. We also apply the AES-256-CTR-based DRBG provided in OpenSSL.
Comparing PALOMA with Classic McEliece reveals that PALOMA exhibits faster Encap and Decap
speeds. However, GenKeyPair of Classic McEliece is faster than that of PALOMA.
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Table 4.3: Data Size Comparison of Code-based KEMs (in bytes)

Security Algorithm Public key Secret key Ciphertext Key

128

hqc-128 2,249 40 4,481 64

BIKE 1,541 281 1,573 32

mceliece348864 261,120 6,492 96 32

PALOMA-128 319,488 94,528 136 32

192

hqc-192 4,522 40 9,026 64

BIKE 3,083 419 3,115 32

mceliece460896 524,160 13,608 156 32

PALOMA-192 812,032 357,568 240 32

256

hqc-256 7,245 40 14,469 64

BIKE 5,122 580 5,154 32

mceliece6688128 1,044,992 13,932 208 32

PALOMA-256 1,025,024 359,616 240 32

Table 4.4: Speed Performance of PALOMA (in milliseconds(cycles))

PALOMA-128 PALOMA-192 PALOMA-256

Plat. 1 Plat. 2 Plat. 1 Plat. 2 Plat. 1 Plat. 2

GenKeyPair 39.58
(947,517)

27.81
(1,021,606)

167.70
(4,025,479)

119.77
(2,939,786)

207.22
(5,001,633)

150.03
(3,665,877)

Encrypt 0.003
(56)

0.003
(42)

0.005
(89)

0.004
(74)

0.006
(109)

0.005
(88)

Decrypt 2.57
(61,778)

1.71
(42,278)

13.03
(310,759)

8.92
(214,352)

13.70
(328,884)

9.42
(225,706)

Encap 0.052
(1,257)

0.042
(1,014)

0.061
(1,444)

0.051
(1,279)

0.067
(1,611)

0.060
(1,368)

Decap 2.56
(62,322)

1.75
(40,848)

13.00
(312,372)

8.97
(212,087)

13.67
(329,616)

9.43
(225,231)

Table 4.5: Comparison between PALOMA and Classic McEliece in Plat. 2 (in milliseconds(cycles))

GenKeyPair Encap Decap

128-bit PALOMA-128 27.81
(1,021,606)

0.042
(1,014)

1.75
(40,848)

mceliece348864f 28.24
(651,804)

0.038
(940)

15.03
(353,312)

192-bit PALOMA-192 119.77
(2,939,786)

0.051
(1,279)

8.97
(212,087)

mceliece460896f 79.67
(1,922,618)

0.073
(1,817)

37.16
(898,408)

256-bit PALOMA-256 150.03
(3,665,877)

0.060
(1,368)

9.43
(225,231)

mceliece6688128f 139.61
(3,331,050)

0.124
(2,920)

71.94
(1,726,978)



Chapter 5

Security

5.1 OW-CPA-secure PKE = (GenKeyPair,Encrypt,Decrypt)

When evaluating the security of PALOMA, it is important to consider that no critical attacks on
binary separable Goppa codes have been reported thus far. However, for the purpose of security
analysis, we assume that the scrambled code of a Goppa code is indistinguishable from a ran-
dom code. It is considered difficult to generate an effective distinguisher for Goppa codes used in
PALOMA, as their rates are all less than 0.8 [10]. Therefore, the most powerful attack considered
is the ISD, which is a generic attack of SDP. Consequently, the security strength of PALOMA is
assessed based on the number of bit operations required for the ISD process.

SDP based on C = [n, k,≥ 2t + 1]2 is defined with a parity-check matrix H ∈ F(n−k)×n
2 , a

syndrome s ∈ Fn−k2 , and a Hamming weight t. We denote SDP(H, s, t) as the root set of the SDP.
We also denote the set of all n-bit vectors with a Hamming weight of t as Ent and represent the
zero matrix as 0. It is worth noting that the parameters n and t of PALOMA are selected to ensure
that the underlying SDP possesses a unique root, and that both n and t are even.

5.1.1 Assumptions for Analysis

5.1.1.1 Deterministic Fisher-Yates Shuffle based on a 256-bit string

PALOMA utilizes the Shuffle (Alg. 6) to generate Goppa codes, permutation matrices, and error
vectors. The deterministic Shuffle based on a 256-bit input is a modified version of the probabilistic
Fisher-Yates shuffle. The Shuffle satisfies the following property.

Proposition 5.1. Let w ∈ {3904, 5568, 6592, 8192} and A = [0, 1, . . . , w − 1]. If Shuffle(A, r) =
Shuffle(A, r̂) for some r, r̂ ∈ {0, 1}256, then r = r̂.

Proof. Let r = (r0, r1, . . . , r15) and r̂ = (r̂0, r̂1, . . . , r̂15) for 0 ≤ ri, r̂i < 216. According to the
nature of the Fisher-Yates shuffle, in order for the two resulting arrays to be identical, the following
equation must be satisfied.

rj mod 16 ≡ r̂j mod 16 (mod w − j) for j = 0, 1, . . . , w − 2.

When w = 3904, we obtain r0 ≡ r̂0 (mod 3904) and r0 ≡ r̂0 (mod 3888), resulting in
lcm(3904, 3888) = 948672 | r0 − r̂0. However, since 0 ≤ r0, r̂0 < 216 = 65536, we have r0 = r̂0. By
employing a similar method, we obtain ri = r̂i for i = 1, . . . , 15. The same approach applies when
w ∈ {5568, 6592, 8192} and yields the same result.
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According to Proposition 5.1, Shuffle returns distinct 2256 arrays. PALOMA assumes that an
arbitrarily selected array from the total of w! possible arrays and an array obtained through Shuffle
with an arbitrarily selected 256-bit input are indistinguishable.

5.1.1.2 Number of Equivalent Codes

PALOMA defines the support set L as the top n elements obtained by shuffling F213 using the
Shuffle with a 256-bit input. The next t elements are defined as the zeros to the Goppa polynomial
g(X). Therefore, the expected number of equivalent codes among the 2256 Goppa codes generated
using this method is as follows.

2256 ×
(
213

n

)
n!
(
213−n
t

)
t!

213!
=

2256

(213 − n− t)!
≈


2−44532, PALOMA-128,

2−24318, PALOMA-192,

2−13117, PALOMA-256.

Due to the expectation values being extremely small for all three parameters of PALOMA, it is
assumed that PALOMA defines the SDP using distinct 2256 Goppa codes.

5.1.1.3 Number of t-Hamming weight Error Vectors

PALOMA uses GenErrVec to generate an error vector e∗ ∈ Fn2 with a Hamming weight of t. (Alg.
9) In other words, based on a 256-bit string r∗, it shuffles the array [0, 1, . . . , n − 1] and defines
supp (e∗) as the top t elements. The expected value for the number of identical vectors among the
2256 error vectors generated using this method is as follows.

2256 ×
(
n
t

)
t!

n!
=

2256

(n− t)!
≈


2−39933, PALOMA-128,

2−59410, PALOMA-192,

2−72248, PALOMA-256.

Since the expected value for all three parameter sets of PALOMA is significantly smaller than
2−256, it is assumed that GenErrVec returns distinct 2256 error vectors.

5.1.1.4 Number of Plaintexts

In PALOMA, the plaintext ê of the SDP is generated from a 256-bit string r∗ through the operations
GenErrVec, ROG, and Perm. (Fig. 3.2 (a)) PALOMA assumes that the probability of having different
256-bit strings that produce the same plaintext ê through this process is extremely low and can be
disregarded. In other words, PALOMA considers that there are 2256 possible plaintext candidates.

5.1.2 Exhaustive Search

The naive algorithm for finding roots of an SDP in PALOMA is the exhaustive search, shown in
Alg. 16. The computational search complexity is O

((
n
t

)
(n− k)

)
in terms of bit operations. The

complexity for each PALOMA parameter set is as follows.

O

((
n

t

)
(n− k)

)
≈


O
(
2476.52

)
, PALOMA-128,

O
(
2885.11

)
, PALOMA-192,

O
(
2916.62

)
, PALOMA-256.
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Algorithm 16 Exhaustive Search of SDP

Input: H = [h0 | h1 | · · · | hn−1] ∈ F(n−k)×n
2 , s ∈ Fn−k2 , and t

Output: e ∈ Ent such that He = s

1: for j1 = 0 to n− 1− (t− 1) do
2: v1 ← s+ hj1
3: for j2 = j1 + 1 to n− 1− (t− 2) do
4: v2 ← v1 + hj2
5: · · ·
6: for jt = jt−1 + 1 to n− 1 do
7: vt ← vt−1 + hjt
8: if vt = 0n−k then
9: set e with supp (e) = {j1, . . . , jt}

10: return e
11: end if
12: end for
13: end for
14: end for

PALOMA assumes that its underlying SDP has 2256 candidate roots. (Section 5.1.1.4) Each can-
didate generation requires the operations of GenErrVec, ROG, and Perm. The process of verifying
if a candidate is a root requires t− 1 (n− k)-bit additions. The computational cost of the Shuffle,
which is the main operation in GenErrVec and Perm, is negligible compared to the hash function
operation, ROG. Similarly, the computational cost of t− 1 (n− k)-bit additions is also negligible
compared to the ROG operation. Therefore, the total computational cost of exhaustively search-
ing the root candidates is O(2256TG) where TG is the computational cost of the ROG operation.
Assuming TG < 240, generating and verifying the root candidates in PALOMA is more efficient
in terms of computational cost compared to investigating all vectors with a Hamming weight of
t. The set of 2256 root candidates can be precomputed before the start of the SDP challenge,
independent of the public/secret keys. However, this requires memory of 2256t dlog2 ne bits.

5.1.3 Birthday-type Decoding

For a random permutation matrix P ∈ Pn, SDP(H, s, t) and SDP(HP, s, t) have the necessary
and sufficient conditions: e ∈ SDP(H, s, t) if and only if P−1e ∈ SDP(HP, s, t). Let I := [0 : n2 ],
J := [n2 : n], and Ĥ := HP. Birthday-type decoding transforms SDP until finding the root
ê = (êI‖êJ) := P−1e ∈ SDP(Ĥ, s, t) that satisfies wH(êI) = wH(êJ) =

t
2 for a random permutation

matrix P. To find êI and êJ , we check the intersection of TI := {s + ĤI êI ∈ Fn−k2 : êI ∈ En/2t/2 }
and TJ := {ĤJ êJ ∈ Fn−k2 : êJ ∈ En/2t/2 }. The probability that the two sets, TI and TJ , have an

intersection for a randomly chosen permutation matrix P is p =
(
n/2
t/2

)2
/
(
n
t

)
. Therefore, the process

of transforming SDP with a new P must be repeated at least 1/p times. Alg. 17 shows this attack
in detail.

Since the number of bit computations for calculating ĤI êI and ĤJ êJ are O(
(
n/2
t/2

)
(n− k)), the

total amount of computations for the PALOMA parameters is as follows.

O

(
2

(
n

t

)
(n− k)

/(n/2
t/2

))
=


O(2245.77), PALOMA-128,

O(2450.81), PALOMA-192,

O(2466.57), PALOMA-256.
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Algorithm 17 Finding a root of SDP: Birthday-type Decoding

Input: H ∈ F(n−k)×n
2 and s ∈ Fn−k2 , w and I = [0 : n2 ], J = [n2 : n]

Output: e ∈ Fn2 such that He = s and wH(e) = t

1: while TRUE do
2: P $←− Pn
3: Ĥ← HP
4: T [j]← NULL for all j ∈ {0, 1}n−k

5: for êI in En/2t/2 do . exhaustive search

6: u← s+ ĤI êI // num. of bit operations = n− k
7: T [u]← êI
8: end for
9: for êJ in En/2t/2 do . exhaustive search

10: u← ĤJ êJ // num. of bit operations = n− k
11: if T [u] 6= NULL then
12: ê← (T [u]‖êJ) . T [u] = êI
13: return Pê
14: end if
15: end for
16: end while

To increase the probability p to a value close to 1 in birthday-type decoding, define the two subsets
I =

[
0 : n2 + ε

]
and J =

[
n
2 − ε : n

]
for some ε > 0. When we find e1, e2 ∈ E

n
2 +ε

t/2 that satisfy

s+ ĤIe1 = ĤJe2, it cannot be assumed that (e1‖0
n
2−ε)+ (0

n
2−ε‖e2) is a root. If wH((e1‖0

n
2−ε)+

(0
n
2−ε‖e2)) = t, then (e1‖0

n
2−ε) + (0

n
2−ε‖e2) is the root. Therefore it is necessary to include this

discriminant. In this attack, ε is set to a value that makes the probability p =
(
n/2+ε
t/2

)2
/
(
n
t

)
close

to 1. The calculated amount of birthday-type decoding for the PALOMA parameters is counted as
follows.

O

(
2(n− k)

(
n/2 + ε

t/2

))
≈ O

(
2(n− k)

√(
n

t

))
=


O(2244.11), PALOMA-128,

O(2448.91), PALOMA-192,

O(2464.66), PALOMA-256.

We consider the computation cost of this approach as a birthday-type decoding calculation, even
though the overall computational complexity decreases by only about 2 or 3 bits compared to the
increase in memory complexity.

5.1.4 Improved Birthday-type Decoding

By defining two smaller SDPs from the SDP, and obtaining the roots of each SDP through birthday-
type decoding, it is possible to find the root of the SDP while checking if the root candidate satisfies
certain conditions. This is referred to as improved birthday-type decoding.

Consider H =
(H1

H2

)
∈ F(n−k)×n

2 as a concatenation of two submatrices, H1 ∈ Fr×n2 and
H2 ∈ F(n−k−r)×n

2 , where r ≤ n − k. For the n-bit roots x ∈ SDP
(
H1, s[0:r], t/2 + ε

)
and y ∈

SDP (H1, 0
r, t/2 + ε) for H1, if x and y satisfy H2(x + y) = s[r:n−k] and wH(x + y) = t, then

x+y ∈ SDP(H, s, t). Note that |SDP
(
H1, s[0:r], t/2 + ε

)
| ≈ |SDP (H1, 0

r, t/2 + ε) | ≈ ( n
t/2+ε)
2r . Alg.

18 shows this method in detail.
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Algorithm 18 Finding a root of SDP: Improved Birthday-type Decoding

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , t and r

Output: e ∈ Fn2 such that He = s and wH(e) = t

1: T [j]← ∅ for all j ∈ {0, 1}n−k−r
2: for x in SDP

(
H1, s[0:r], t/2 + ε

)
do . birthday-type decoding

3: u← s[r:n−k] +H2x // num. of bit operations = (t/2 + ε)(n− k − r)
4: T [u]← T [u] ∪ {x}
5: end for
6: for y in SDP (H1, 0

r, t/2 + ε) do . birthday-type decoding
7: u← H2y // num. of bit operations = (t/2 + ε)(n− k − r)
8: for x in T [u] do // |T [u]| ≈ ( n

t/2+ε)
2r × 1

2n−k−r

9: e← x+ y // num. of bit operations = ( n
t/2+ε)
2r × n( n

t/2+ε)
2n−k

10: if wH(e) = t then
11: return e
12: end if
13: end for
14: end for

The number of bit operations in this algorithm is as follows.

4r

√(
n

t/2 + ε

)
+

(
n

t/2+ε

)
2r

(
(t+ 2ε)(n− k − r) +

n
(

n
t/2+ε

)
2n−k

)
.

Choice of ε. When two subsets A and B with the number of elements t/2 + ε are randomly
selected from the set [0 : n], the expected value E[|A ∩ B|] is (t/2+ε)2

n . Therefore, for the roots x
and y of each small SDP, E[wH(x+ y)] is as follows.

E[wH(x+ y)] = E[2(|supp (x) | − |supp (x) ∩ supp (y) |)]
= 2E[|supp (x) |]− 2E[|supp (x) ∩ supp (y) |)]

= 2 (t/2 + ε)− 2(t/2 + ε)2

n
.

Set ε to satisfy ε = (t/2+ε)2

n , i.e., ε =
√
n2−2nt+(n−t)

2 . Then E[wH(x+ y)] = t.

Choice of r. For e ∈ SDP(H, s, t), the number of (x, y) pairs satisfying e = x + y is |{(x, y) ∈
(Ent/2+ε)

2 : e = x+y}| =
(
t
t/2

)(
n−t
ε

)
. Therefore, set r to satisfy 2r ≈

(
t
t/2

)(
n−t
ε

)
to count the number

of roots of small SDP accurately. The required amount of bit operations of improved birthday-type
decoding for PALOMA parameters is as follows.

O(2225.45) (ε = 3840, r = 61), PALOMA-128,

O(2398.84) (ε = 5440, r = 125), PALOMA-192,

O(2414.76) (ε = 6464, r = 125), PALOMA-256.

5.1.5 Information Set Decoding

ISD is a generic decoding algorithm for random linear codes. The first phase of ISD involves
transforming the parity-check matrix H into a systematic form to facilitate the identification of
an error-free information set. In the second phase, error vectors satisfying specific conditions are
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identified, utilizing a combination of birthday attack-type searches and partial brute force attacks.
Initially proposed by E. Prange in 1962, ISD has demonstrated improved computational complexity
by modifying the error vector conditions and incorporating search techniques inspired by birthday
attacks [1, 5, 6, 9, 11,18,19,21,22,27,29].

5.1.5.1 Procedure

ISD utilizes Proposition 5.2, which describes the relationship between the code C and the scrambled
code Ĉ of C in terms of the root of SDP.

Proposition 5.2. Let e ∈ SDP(H, s, t). For an invertible matrix S ∈ F(n−k)×(n−k)
2 and a permu-

tation matrix P ∈ Pn, we know P−1e ∈ SDP(SHP,Ss, t).

ISD is a probabilistic algorithm that modifies SDP until it finds a root that satisfies certain
conditions. ISD proceeds to the following two phases.

(Phase 1) Redefining a problem: Find e ∈ SDP(H, s, t) ⇒ Find ê = P−1e ∈ SDP(Ĥ = SHP, ŝ =
Ss, t) where SHP =

( Il M1

0 M2

)
is a partially systematic matrix obtained by applying

elementary row operations.

(Phase 2) Find ê(= P−1e) ∈ SDP(Ĥ, ŝ, t) that satisfies the specific Hamming weight condition
and return e(= Pê). If no root satisfies the condition, go back to (Phase 1).

5.1.5.2 Computational Complexity

Let p be the probability that the root ê satisfies a specific Hamming weight condition in the modi-
fied problem. The computational complexity of the ISD is 1

p×((Phase 1)’s computational amount+
(Phase 2)’s computational amount). (Phase 1) involves modifying the problem using the Gaussian
elimination. Most ISD algorithms require O((n− k)2n) bit operations in this phase. ISD has been
developed by improving the computational efficiency of (Phase 2) and the probability p.

We considered the BJMM-ISD to be the most effective ISD because the subsequent ISDs pro-
posed after the BJMM-ISD in 2012 only provided minor improvements in specific situations [1].
Consequently, the parameters of PALOMA were chosen based on the precise calculation of the
number of bit operations involved in the BJMM-ISD. The BJMM-ISD transforms the SDP into a
small SDP and identifies the root of the SDP using birthday-type attacks.

5.1.5.3 Becker-Joux-May-Meurer

BJMM-ISD is an ISD that applies improved birthday-type decoding to the partial row-reduced

echelon form [1]. Transform H into the form Ĥ =

(
In−k−l H1

0 H2

)
where H1 ∈ F(n−k−l)×(k+l)

2

and H2 ∈ Fl×(k+l)2 by applying a partial RREF(row-reduced echelon form) operation for some
l(≤ n− k). For I = [0 : n− k− l], J = [n− k− l : n], and L = [n− k− l : n− k], BJMM-ISD finds
the root ê = (êI‖êJ) of SDP(Ĥ = SHP, ŝ = Ss, t) that satisfies the following conditions.

wH(êI) = t− p, wH(êJ) = p, êJ ∈ SDP(H2, ŝL, p), êI + êJH1 = ŝI .

The process of BJMM-ISD is as follows.

(Phase 1) Randomly select a permutation matrix P ∈ Pn. Apply partial RREF to HP to obtain a

partial canonical matrix Ĥ =

(
In−k−l H1

0 H2

)
. In this process, the invertible matrix
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S satisfying Ĥ = SHP can be obtained simultaneously. If there is no invertible matrix
S that makes it a partial systematic form, (Phase 1) is performed again.

(Phase 2) Obtain SDP(H2, ŝL, p) using the improved birthday-type decoding. If the root does not
exist, go back to (Phase 1). If the Hamming weight of the vector x := ŝI + H1y for
y ∈ SDP(H2, ŝL, p) is t− p, return Pê because it is ê = (x‖y) ∈ SDP(Ĥ, ŝ, t). If not, go
back to (Phase 1).

Alg. 19 presents the BJMM-ISD process in detail.

Algorithm 19 Finding a root of SDP: BJMM-ISD

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , and t

Output: e ∈ Fn2 such that He = s and wH(e) = t

1: while TRUE do
2: P $←− Pn
3: Ĥ = SHP← partial RREF(HP) // num. of bit operations = (n− k − l)(n− k)n
4: if ĤI×I = In−k−l then

5: H1,H2 ← HJ×I ,HJ×L . Ĥ =

(
In−k−l H1

0 H2

)
6: ŝ← Ss
7: for y in SDP(H2, ŝL, p) do // |SDP(H2, ŝL, p)| ≈

(k+lp )
2l

. improved birthday-type
decoding

8: x← ŝI +H1y // num. of bit operations = p(n− k − l)
9: if wH(x) = t− p then

10: ê← (x‖y)
11: return Pê
12: end if
13: end for
14: end if
15: end while

The probability that ê = P−1e satisfies the Hamming weight condition for e ∈ SDP(H, s, t) in
BJMM-ISD is as follows.

Pr[P $←− Pn, (wH(êI) = t− p) ∧ (wH(êJ) = p)] =

(
n−k−l
t−p

)(
k+l
p

)(
n
t

) .

Therefore, the calculation amount for the bit operation in the BJMM-ISD is as follows.(
n
t

)(
n−k−l
t−p

)(
k+l
p

) ((n− k − l)(n− k)n+
p(n− k − l)

(
k+l
p

)
2l

+ T

)
,

where T := num. of bit operations for SDP(H2, ŝL, p). In this process, ε and r are set as follows
for the computation of SDP(H2, ŝL, p).

ε =

√
(k + l)2 − 2(k + l)p+ (k + l − p)

2
, r = log2

((
p

p/2

)(
k + l − p

ε

))
.
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The required amount of bit operations of BJMM-ISD for PALOMA parameters is as follows.
O(2166.21) (l = 67, p = 14), PALOMA-128,

O(2267.77) (l = 105, p = 22), PALOMA-192,

O(2289.66) (l = 126, p = 26), PALOMA-256.

Based on the above results, PALOMA claims that PALOMA-128, PALOMA-192, and PALOMA-256
have security strengths of 128-bit, 192-bit, and 256-bit, respectively. Tab. 5.1 is a comparison of
the computational complexity of the exhaustive search, (improved) birthday-type decoding, and
BJMM-ISD for PALOMA and Classic McEliece.

Table 5.1: Complexity of Several Attacks on PALOMA and Classic McEliece

Security Algorithm BJMM-ISD
Improved
Birthday-

type

Birthday-
type

Exhaustive
Search

128 PALOMA-128 2166.21 (l = 67, p = 14) 2225.78 2244.11 2476.52

mceliece348864 2161.97 (l = 66, p = 14) 2220.26 2238.75 2465.91

192 PALOMA-192 2267.77 (l = 105, p = 22) 2399.67 2448.91 2885.11

mceliece460896 2215.59 (l = 86, p = 18) 2311.80 2345.58 2678.88

256

PALOMA-256 2289.66 (l = 126, p = 26) 2415.59 2464.66 2916.62

mceliece6688128 2291.56 (l = 126, p = 26) 2416.95 2466.01 2919.32

mceliece6960119 2289.92 (l = 136, p = 28) 2402.41 2443.58 2874.57

mceliece8192128 2318.34 (l = 157, p = 32) 2436.05 2484.90 2957.10

5.2 IND-CCA2-secure KEM = (GenKeyPair,Encap,Decap)

In the IND-CCA2 security experiment, which stands for INDistinguishability against Adaptive
Chosen-Ciphertext Attack, for KEM = (GenKeyPair,Encap,Decap), the challenger C sends a chal-
lenge (ciphertext, key) pair to the adversary A, who guesses whether the pair is correct or not.
Here, “correct” means that the pair (ciphertext, key) is a valid output of the Encap. The adversary
is allowed to query the decapsulation oracle ODecapsk except for the challenge during the experi-
ment. Fig. 5.1 depicts the security experiment ExpIND-CCA2

KEM,λ (A) for IND-CCA2-secure KEM in ROM.
Here, λ is the security parameter and H is the random oracle.

We define the advantage AdvIND-CCA2
KEM,λ (A) of A as follows.

AdvIND-CCA2
KEM,λ (A) :=

∣∣∣∣Pr[ExpIND-CCA2
KEM,λ (A) = 1]− 1

2

∣∣∣∣ .
We say that KEM is IND-CCA2-secure in ROM when the advantage AdvIND-CCA2

KEM,λ (A) of A is negli-
gible in terms of λ for any probabilistic polynomial-time attacker A.
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Challenger C
ExpIND-CCA2

KEM,λ (A)
←−−−−−−−−−−→ IND-CCA2 Adversary A

H
$←− Ω, (pk, sk)← GenKeyPair(1λ),
C constructs ODecapsk

1λ,pk−−−−→

C responds to A’s queries
queries

↼−−−−−−−−−−⇁
answers

A queries to H and ODecapsk

(c∗, k∗)← Encap(pk)

b
$←− {0, 1}

If b = 0, then k∗
$←− K

(c∗,k∗)−−−−−→

C responds to A’s queries
queries

↼−−−−−−−−−−⇁
answers

A queries to H and ODecapsk

Return [b′
?
= b]

b′←− A chooses b′

Figure 5.1: Security Experiment ExpIND-CCA2
KEM,λ (A) for IND-CCA2-secure KEM in ROM

5.2.1 OW-CPA-secure PKE

Based on the analysis results in Section 5.1, it is assumed that the underlying deterministic PKE =

(GenKeyPair,Encrypt,Decrypt) of PALOMA is OW-CPA-secure. PKE has the following properties.
For all key pairs (pk, sk) ∈ PK × SK,

(1) (Injectivity) if Encrypt(pk; ê1) = Encrypt(pk; ê2), then ê1 = ê2, and

(2) (Correctness) Pr[ê 6= Decrypt(sk;Encrypt(pk; ê))] = 0 for all ê ∈ Ent .

The Fujisaki-Okamoto transformation is a method for designing an IND-CCA2-secure scheme
from an OW-CPA-secure scheme in random oracle model. There are several variants of the Fujisaki-
Okamoto transformation. Using the above properties, PALOMA is designed based on the im-
plicit rejection KEM6⊥ = U 6⊥[PKE1 = T[PKE0, G], H] among FO-like transformations proposed by
Hofheinz et al. [14]. This is combined with two modules: (1) T: converting OW-CPA-secure PKE0 to
OW-PCA(Plaintext-Checking Attack)-secure PKE1 and (2) U6⊥: converting it to IND-CCA2-secure
KEM as follows.

OW-CPA-secure PKE0 = (GenKeyPair,Encrypt0,Decrypt0)
T−−−−−−−−−−−−−−−→

with a random oracle G
OW-PCA-secure PKE1 = (GenKeyPair,Encrypt1,Decrypt1)

U6⊥−−−−−−−−−−−−−−−→
with a random oracle H

IND-CCA2-secure KEM6⊥ = (GenKeyPair,Encap,Decap).

5.2.2 OW-CPA-secure PKE0

PKE0 is defined with the PKE and Perm/PermInv of PALOMA as follows, and Alg. 20 shows the
detailed process of PKE0.

Encrypt0(pk; r̂; e
∗) := (r̂,Encrypt(pk;Perm(e∗, r̂))),

Decrypt0(sk; (r̂, ŝ)) := PermInv(Decrypt(sk; ŝ), r̂).
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Algorithm 20 PALOMA: PKE0

Input: A public key pk ∈ PK, a random coin
r̂ ∈ {0, 1}256, e∗ ∈ Ent

Output: A ciphertext (r̂, ŝ) ∈ {0, 1}256 × {0, 1}13t

1: procedure Encrypt0(pk; r̂; e
∗)

2: ê← Perm(e∗, r̂)
3: ŝ← Encrypt(pk; ê)
4: return (r̂, ŝ)
5: end procedure

Input: A secret key sk ∈ SK, a ciphertext (r̂, ŝ) ∈
{0, 1}256 × {0, 1}13t

Output: e∗ ∈ Ent
1: procedure Decrypt0(sk; (r̂, ŝ))
2: ê← Decrypt(sk; ŝ)
3: e∗ ← PermInv(ê, r̂)
4: return e∗

5: end procedure

As PKE is assumed to be OW-CPA-secure, it follows that PKE0 is also OW-CPA-secure. Fig.
5.2 shows the OW-CPA adversary A for PKE using an arbitrary OW-CPA adversary A0 for PKE0.

Challenger C
ExpOW-CPA

PKE,λ (A)
←−−−−−−−−−→ OW-CPA Adv. A

ExpOW-CPA
PKE0,λ

(A0)

←−−−−−−−−−−→ OW-CPA Adv. A0

(pk, sk)←
GenKeyPair(1λ)

1λ,pk−−−−→ 1λ,pk−−−−→

ê
$←− Ent ,

ŝ← Encrypt(pk; ê)

ŝ−→

r̂
$←− {0, 1}256,
c← (r̂, ŝ)

c=(r̂,ŝ)−−−−−→

Return [ê′
?
= ê]

ê′←− ê′ ← Perm(e∗′, r̂)
e∗′←−− A0 chooses e∗′

Figure 5.2: Construction of an OW-CPA Adversary for PKE using an OW-CPA Adversary for PKE0

5.2.3 OW-PCA-secure PKE1

The transform T for converting OW-CPA-secure PKE0 to OW-PCA-secure PKE1 is defined by

Encrypt1(pk; e
∗) := Encrypt0(pk;ROG(e

∗); e∗).

Alg. 21 shows the PKE1 constructed by the transformation T and a random oracle ROG.

In OW-PCA for PKE1, the adversary can query to the plaintext-checking orcle OPC, described
in Alg. 22, during the OW-CPA security experiment. For any OW-PCA-attackers B on PKE1, there
exists an OW-CPA-attacker A on PKE0 satisfying the inequality below [14, Theorem 3.1].

AdvOW-PCA
PKE1,λ (B) ≤ (qG + qP + 1)AdvOW-CPA

PKE0,λ (A), (5.1)

where qG and qP are the number of queries to the random oracle ROG and the plaintext-checking
oracle OPC, which can be implemented by re-encryption. Note that PALOMA cannot implement a
ciphertext validity oracle because it generates error vectors as messages from a 256-bit string.

From Eq. (5.1), if PKE0 is OW-CPA-secure and qG, qP are polynomials in terms of λ, then
AdvOW-PCA

PKE1,λ (B) is negligible, so we have PKE1 is OW-PCA-secure.
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Algorithm 21 PALOMA: PKE1

Input: A public key pk ∈ PK, e∗ ∈ Ent
Output: A ciphertext (r̂, ŝ) ∈ {0, 1}256 × {0, 1}13t

1: procedure Encrypt1(pk; e
∗)

2: r̂ ← ROG(e∗)
3: (r̂, ŝ)← Encrypt0(pk; r̂; e

∗)
4: return (r̂, ŝ)
5: end procedure

Input: A secret key sk ∈ SK, a ciphertext (r̂, ŝ) ∈
{0, 1}256 × {0, 1}13t

Output: e∗ ∈ Ent or ⊥
1: procedure Decrypt1(sk; (r̂, ŝ))
2: e∗ ← Decrypt0(sk; ŝ)
3: if wH(e∗) 6= t then
4: return ⊥
5: end if
6: r̂′ ← ROG(e∗)
7: if r̂′ 6= r̂ then
8: return ⊥
9: end if

10: return e∗

11: end procedure

Algorithm 22 PALOMA: Plaintext Checking Oracle OPC for PKE1

Input: A message e∗, a ciphertext (r̂, ŝ)
Output: 1 or 0
1: procedure OPC(e∗, (r̂, ŝ))
2: r̂′ ← ROG(e∗)
3: if r̂′ 6= r̂ then
4: return 0
5: end if
6: ê← Perm(e∗, r̂)
7: ŝ′ ← Encrypt(pk; ê)
8: if ŝ′ 6= ŝ then
9: return 0

10: end if
11: return 1
12: end procedure

5.2.4 IND-CCA2-secure KEM 6⊥

The transform U 6⊥ for converting OW-PCA-secure PKE1 to IND-CCA2-secure KEM 6⊥ is as follows.

Encap(pk) := (Encrypt1(pk; e
∗)︸ ︷︷ ︸

=:(r̂,ŝ)

),ROH(e∗‖r̂‖ŝ)︸ ︷︷ ︸
=:κ

).

e∗ is determined by GenErrVec(n, t, r∗) with uniformly chosen r∗ ∈ {0, 1}256. Alg. 23 shows KEM6⊥

of PALOMA constructed by using the transformation U 6⊥ and a random oracle ROH .
For any IND-CCA2-attackers B on KEM6⊥, there exists an OW-PCA-attacker A on PKE1 satis-

fying the inequality below [14, Theorem 3.4].

AdvIND-CCA2
KEM 6⊥,λ (B) ≤ qH

2256
AdvOW-PCA

PKE1,λ (A),

where qH is the number of queries to the plaintext-checking oracle. Therefore, if PKE1 is OW-PCA-
secure and qH are polynomials in terms of λ, then AdvIND-CCA2

KEM 6⊥,λ (B) is negligible. Consequently, we
have that KEM6⊥ is IND-CCA2-secure.
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Algorithm 23 PALOMA: KEM6⊥

Input: A public key pk ∈ PK
Output: A ciphertext (r̂, ŝ) ∈ {0, 1}256 × {0, 1}13t

and a key κ ∈ {0, 1}256

1: procedure Encap(pk)
2: r∗

$←− {0, 1}256
3: e∗ ← GenErrVec(n, t, r∗)
4: (r̂, ŝ)← Encrypt1(pk; e

∗)
5: κ← ROH(e∗‖r̂‖ŝ)
6: return (r̂, ŝ) and κ
7: end procedure

Input: A secret key sk ∈ SK, a ciphertext (r̂, ŝ) ∈
{0, 1}256 × {0, 1}13t

Output: e∗ ∈ Ent or ⊥
1: procedure Decap(sk; (r̂, ŝ))
2: e∗ ← Decrypt1(sk; (r̂, ŝ))
3: ẽ← GenErrVec(n, t, r) // r ← sk
4: if e∗ =⊥ then
5: κ← ROH(ẽ‖r̂‖ŝ)
6: else
7: κ← ROH(e∗‖r̂‖ŝ)
8: end if
9: return κ

10: end procedure



Chapter 6

Conclusion

In this proposal, we introduce PALOMA, an IND-CCA2-secure KEM based on an SDP with a
binary separable Goppa code. While the components and mechanisms used in PALOMA have been
studied for a long time, no critical attacks have been found. Many cryptographic communities
believe that the scheme constructed by these is secure. The Classic McEliece, which is the round
4 cipher of the NIST PQC competition, was also designed based on similar principles [4]. Both
PALOMA and Classic McEliece have similar public key sizes. However, PALOMA is designed with a
focus on deterministic algorithms for constant-time operations, making it more efficient in terms
of implementation speed compared to Classic McEliece. We give the feature comparison between
PALOMA and Classic McEliece in Tab. 6.1.

Table 6.1: Comparison between PALOMA and Classic McEliece

PALOMA Classic McEliece

Structure Fujisaki-Okamoto-structure KEM SXY-structure KEM
(implicit rejection) (implicit rejection)

Problem SDP SDP

Trapdoor type Niederreiter Niederreiter

Finite Field Fqm F213 F212 , F213

Linear code C Binary separable Goppa code Binary irreducible Goppa code

Goppa polynomial g(X) Separable (not irreducible) Irreducible

Time for generating g(X) Constant Non-constant

Parity-check matrix H of C ABC BC

Parity-check matrix Ĥ of Ĉ Systematic form Systematic form

Decoding algorithm Extended Patterson Berlekamp-Massey

Probability of decryption
failure (correctness) 0 0

A primary role of post-quantum cryptography is to serve as an alternative to current cryptosys-
tems that are vulnerable to quantum computing attacks. Therefore, we have designed PALOMA
with a conservative approach, and thus, we firmly believe that PALOMA can serve as a dependable
alternative to existing cryptosystems in the era of quantum computers.
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Appendix A

SAGE code for a Binary Separable
Goppa code used in PALOMA

1 '''
2

3 Copyright 2024 FDL(Future cryptograph Design Laboratory , Kookmin University
4

5 Permission is hereby granted , free of charge , to any person obtaining
6 a copy of this software and associated documentation files (the "Software "),
7 to deal in the Software without restriction , including without limitation
8 the rights to use , copy , modify , merge , publish , distribute , sublicense ,
9 and/or sell copies of the Software , and to permit persons to whom the Software

10 is furnished to do so, subject to the following conditions:
11 The above copyright notice and this permission notice shall be included
12 in all copies or substantial portions of the Software.
13

14 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS
15 OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
16 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES
18 OR OTHER LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE ,
19 ARISING FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
20 OR OTHER DEALINGS IN THE SOFTWARE.
21

22 '''
23

24 '''
25 Sage Code for Binary Separable Goppa Codes used in PALOMA
26 Developed by KMU/FDL
27 2024.02.23.
28 '''
29

30 '''
31 F2m = GF (2^13) (i.e., m = 13)
32 Separable Goppa Polymoial g(X) with degree t in F2m[X]
33 (t-error correctable code)
34

35 n + t <= q^m = 2^13 = 8192
36 k >= n - mt = n - 13t
37

38 [PALOMA parameter sets]
39 PALOMA128:
40 n = 3904( 61), k = 3072, n-k = 832(13) , m = 13, t = 64,

59
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41 f = z^13 + z^7 + z^6 + z^5 + 1
42 PALOMA192:
43 n = 5568( 87), k = 3904, n-k = 1664(26) , m = 13, t = 128,
44 f = z^13 + z^7 + z^6 + z^5 + 1
45 PALOMA256:
46 n = 6592(103) , k = 4928, n-k = 1664(26) , m = 13, t = 128,
47 f = z^13 + z^7 + z^6 + z^5 + 1
48

49 [Toy parameters]
50 n = 37, k = 19, n-k = 18, t = 3, m = 6, f = z^6 + z^4 + z^3 + z + 1
51 n = 100, k = 72, n-k = 28, t = 4, m = 7, f = z^7 + z + 1
52 n = 120, k = 64, n-k = 56, t = 8, m = 7, f = z^7 + z + 1
53 n = 241, k = 121, n-k = 120, t = 15, m = 8, f = z^ 8 + z^4 + z^3 + z^2 + 1
54 n = 53, k = 27, n-k = 26, t = 2, m = 13, f = z^13 + z^7 + z^6 + z^5 + 1
55 n = 79, k = 40, n-k = 39, t = 3, m = 13, f = z^13 + z^7 + z^6 + z^5 + 1
56 '''
57

58 reset ()
59 var('z,X')
60

61 import random
62

63 ###################################################
64

65 def separator (): print ("======================================")
66 def separator2 (): print("--------------------------------------")
67

68 ###################################################
69

70 ###################################################
71 # parameters: n, t, m, irr_poly
72 ###################################################
73

74 paloma_param_set = [
75 [3904, 64, 13, z^13 + z^7 + z^6 + z^5 + 1], # PALOMA128
76 [5568, 128, 13, z^13 + z^7 + z^6 + z^5 + 1], # PALOMA192
77 [6592, 128, 13, z^13 + z^7 + z^6 + z^5 + 1], # PALOMA256
78

79 [ 37, 3, 6, z^6 + z^4 + z^3 + z + 1],
80 [100, 4, 7, z^7 + z + 1],
81 [120, 8, 7, z^7 + z + 1],
82 [241, 15, 8, z^8 + z^4 + z^3 + z^2 + 1],
83

84 [53, 2, 13, z^13 + z^7 + z^6 + z^5 + z^0],
85 [79, 3, 13, z^13 + z^7 + z^6 + z^5 + z^0],
86

87 [216, 8, 13, z^13 + z^7 + z^6 + z^5 + 1],
88 [424, 16, 13, z^13 + z^7 + z^6 + z^5 + 1]
89 ]
90

91 ###################################################
92 # Set Parameter
93 ###################################################
94

95 def SetParameter(param_num):
96 n, t, m, f = paloma_param_set[param_num]
97 k = n - m*t
98 R2.<z> = GF(2)[]
99 F2m.<z> = GF(2^m, modulus = R2(f))

100 R2m.<X> = PolynomialRing(F2m)
101
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102 separator ()
103 print(f"C=[{n},{k},>=2*{t}+1], m={m}")
104

105 return n, k, t, m, F2m , R2m
106

107 ###################################################
108 # function for hex representation
109 ###################################################
110

111 def str_f2m_hex(x, F2m):
112 return "0x{:04x}". format(ZZ(list(F2m(x).polynomial ()), base = 2))
113 # return hex(ZZ(list(F2m(x).polynomial ()), base = 2))
114

115 def show_mat_hex(m, F2m):
116 nrows , ncols = m.nrows (), m.ncols ()
117 for r in range(0, nrows):
118 str = "["
119 for c in range(0, ncols):
120 if c%16 == 0:
121 str += "\n"
122 str += str_f2m_hex(m[r][c], F2m) + " "
123 print (str , "\n]")
124

125 def show_poly_hex(f, F2m):
126 show_mat_hex(matrix(list(f)), F2m)
127

128 def support_set(bin_vec):
129 return [index for index , value in enumerate(bin_vec) if value == 1]
130

131 ###################################################
132 # Generation of Random Goppa Code
133 ###################################################
134

135 def GenGoppaCode(n, t, m, F2m , R2m):
136 print("C is generated by L and g.")
137

138 listF2m = list(F2m)
139 mbitset = list(range (0,2^m,1))
140 random.shuffle(mbitset)
141

142 separator ()
143 # Support set L
144 print("L is generating .. ")
145 L = [listF2m[j] for j in mbitset [:n]];
146 show_mat_hex(matrix(L), F2m);
147

148 separator2 ()
149 # Separable Goppa polynomial g(X)
150 print("g(X) is generating .. ")
151 g = prod ([( R2m.parameter ()+listF2m[j]) for j in mbitset[n:n+t]]);
152 show_poly_hex(g, F2m); print ("");
153

154 separator2 ()
155 # Matrix A, B, C
156 print("A is generating ..")
157 coeffg = list(g) + [0]*(t-1)
158 A = matrix ([ coeffg[i:i+t] for i in [1..t]]);
159

160 separator2 ()
161 print("B is generating ..")
162 B = matrix(F2m , t, n, lambda r, c: (L[c]^r));
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163

164 separator2 ()
165 print("A*B is computing ..")
166 H = A*B;
167

168 separator2 ()
169 # Matrix H = A*B*C
170 print("H=(A*B)*C is computing ..")
171 for ind in [0..n-1]:
172 tt = g(L[ind])^-1
173 H.set_column(ind , H.column(ind) * tt)
174 #print("H =\n")
175 #show_mat_hex(H, F2m); print ("");
176

177 return L, g, H
178

179 ###################################################
180

181 ''' Given f s.t gcd(f,g) = 1, find f^-1 such that f^-1*f = 1 (mod g) '''
182

183 def getInv(f, g, R2m):
184 t = g.degree ()
185 d0 , d1 = R2m(f), R2m(g)
186 a0 , a1 = R2m(1), R2m(0)
187

188 while d1 != 0:
189 q, r = d0.quo_rem(d1)
190 d0 , d1 = d1, r
191 a2 = a0 - q*a1
192 a0 , a1 = a1, a2
193

194 return a0*d0.leading_coefficient ()^-1
195

196

197 ''' Find a2, b1 such that b1*s_hat = a2 (mod g12) with deg condition '''
198

199 def EEA_for_keyeqn(s_hat , g12 , dega , degb , R2m):
200 a0 , a1 = R2m(s_hat), R2m(g12)
201 b0 , b1 = R2m(1), R2m(0)
202

203 while a1 != 0:
204 q, r = a0.quo_rem(a1)
205 a0 , a1 = a1, r
206 b2 = b0 - q*b1
207 b0 , b1 = b1, b2
208

209 if a0.degree () <= dega and b0.degree () <= degb:
210 break
211

212 return a0 , b0
213

214

215 ''' Compute Square Root of f(X) mod g12(X) '''
216

217 def get_sqrt(f, g, m, R2m):
218 sqrtx = power_mod(R2m.parameter (), 2^(m-1), g) # precomputable value
219 degf = R2m(f).degree ()
220 listf = list(f)
221 fe = [sqrt(listf [2*j]) for j in [0.. floor(degf /2)]]
222 fo = [sqrt(listf [2*j+1]) for j in [0.. floor((degf -1)/2)]]
223 sqrtf = (R2m(fe) + R2m(fo)*sqrtx)%g
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224

225 return sqrtf
226

227

228 ''' Given f, find a(X), b(X) such that f = a^2(X) + b^2(X)*X '''
229

230 def get_a2b2x(f, R2m):
231 degf = R2m(f).degree ()
232 listf = list(f)
233 fe = [sqrt(listf [2*j]) for j in [0.. floor(degf /2)]]
234 fo = [sqrt(listf [2*j+1]) for j in [0.. floor((degf -1)/2)]]
235 a, b = R2m(fe), R2m(fo)
236

237 return a, b
238

239 ###################################################
240 # Generate Random Error Vector with Hamming Weight t
241 ###################################################
242

243 def GenErrVec(n,t):
244 nset = list(range(0,n))
245 shuffle(nset)
246

247 e = [0]*n
248 for i in nset [0:t]:
249 e[i] = 1
250

251 return e
252

253 ###################################################
254 # Construct Key Equation
255 ###################################################
256

257 def ConstructKeyEqn(s, g, m, R2m):
258 s_ast = R2m(1) + R2m.parameter ()*s
259 g1 , g2 = gcd(g, s), gcd(g, s_ast)
260 g12 = R2m(g/g1/g2)
261 s2_ast , s1 = R2m(s_ast/g2), R2m(s/g1)
262

263 u = getInv(g2*s1, g12 , R2m)
264 u = (g1 * s2_ast * u)%g12
265 v = get_sqrt(u, g12 , m, R2m)
266

267 return v, g1, g2, g12
268

269 ###################################################
270 # Solve Key Equation
271 ###################################################
272

273 def SolveKeyEqn(v, g12 , dega , degb , R2m):
274 a0 , b0 = EEA_for_keyeqn(v, g12 , dega , degb , R2m)
275 return a0, b0
276

277 ###################################################
278 # Find Error Vector
279 ###################################################
280

281 def FindErrVec(sigma , L, n):
282 err_support_set = []
283 for i in [0..n-1]:
284 if sigma(L[i]) == 0:
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285 err_support_set += [i]
286

287 err_vector = [0]*n
288 for i in err_support_set:
289 err_vector[i] = 1
290

291 return err_vector
292

293 ###################################################
294 # Recovery Error Vector
295 ###################################################
296

297 def DecodeExtPatterson(n, t, L, g, s, m, R2m):
298 s = R2m(list(s))
299 # print (f"gcd(s, g)= {gcd(s,g)}\n")
300

301 # print (f"s(X) is irreducible? {s.is_irreducible ()}")
302 # factors = factor(s)
303 # s_linear_factors = [factor [0] for factor in factors if factor [0]. degree () ==

1]
304 # print(s_linear_factors)
305 # print (f"gcd(s, g)= {gcd(s,g)}")
306 # print (s.factor ())
307

308 separator2 ()
309 print(" Constructing Key Equation ..")
310 v, g1, g2, g12 = ConstructKeyEqn(s, g, m, R2m);
311

312 separator2 ()
313 print(" Solving Key Equation ..")
314 a2 , b1 = SolveKeyEqn(v, g12 , floor(t/2)-g2.degree (), floor ((t-1)/2)-g1.degree ()

, R2m);
315 a, b = a2*g2, b1*g1
316 sigma = (a^2 + b^2*R2m.parameter ()).monic ()
317

318 separator2 ()
319 print(" Finding Zeros of Error Locator Polynomial ..")
320 rec_e = FindErrVec(sigma , L, n);
321

322 separator2 ()
323 print(" Recovered error polynomial rec_e(X)")
324 print(R2m(rec_e))
325

326 return rec_e
327

328 ###################################################
329

330 def DoPALOMA(param_num):
331 n, k, t, m, F2m , R2m = SetParameter(param_num)
332

333 ###################################################
334 # Generating Goppa code
335 ###################################################
336

337 separator ()
338 L, g, H = GenGoppaCode(n, t, m, F2m , R2m);
339

340 ###################################################
341 # Generating t-Hamming weight Error Vector
342 ###################################################
343
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344 separator ()
345 print(" Generating t-Hamming weight Error Vector e..")
346 e = GenErrVec(n, t);
347 print("supp(e)")
348 print(support_set(e))
349 print(" error polynomial e(X)")
350 print(R2m(e))
351

352 ###################################################
353 # Decoding by Extended Patterson Decoding
354 ###################################################
355

356 separator ()
357 print(" Computing the Syndrome Vector s of e..")
358 s = H*vector(e)
359 #print(s)
360 show_mat_hex(matrix(s), F2m)
361

362 separator ()
363 print(" Recovering Error Vector e from s..")
364 rec_e = DecodeExtPatterson(n, t, L, g, R2m(list(s)), m, R2m);
365 print("supp(rec_e)")
366 print(support_set(rec_e))
367

368 separator ()
369 print(f"e == rec_e ? {e == rec_e }");
370

371 ###################################################
372

373 DoPALOMA (0)
374 DoPALOMA (1)
375 DoPALOMA (2)
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