
IPCC - Improved Perfect Code Cryptosystems⋆

Jieun Ryu1, Yongbhin Kim2, Seungtai Yoon3, Ju-Sung Kang4, and Yongjin
Yeom5

1 Kookmin University, Seoul, Republic of Korea
ofryuji@kookmin.ac.kr

2 Kookmin University, Seoul, Republic of Korea
coji67@kookmin.ac.kr

3 Cold Spring Harbor, NY 11724, United States
yoon@cshl.edu

4 Kookmin University, Seoul, Republic of Korea
jskang@kookmin.ac.kr

5 Kookmin University, Seoul, Republic of Korea
salt@kookmin.ac.kr

Abstract. IPCC is a graph-based public key cryptosystem based on
Perfect Code Cryptosystem(PCC) proposed by Koblitz in 1993. The se-
curity of IPCC relies on the difficulty of finding the Perfect Dominating
Set(PDS) in a given 3-regular graph. The existing PCC has not received
much attention so far because of its low efficiency. In fact, encryption
speed of PCC is slower than standard PKC such as RSA and the size of
ciphertext is extremely large. However, we can improve the efficiency of
PCC by combining several graphs during the encryption process. With
multiple graphs, IPCC not only increases the level of but also reduce
encryption times drastically. The unique properties of IPCC, the small
public key and large ciphertext, make it suitable for one-way function or
white box encodings that allow for large amouonts of memory. In this
proposal, IPCC key generation and encryption/decryption algorithms
are explained. In addition, design rationale, security, and performance
analysis of IPCC are briefly discussed.

Keywords: Perfect dominating set · Perfect code cryptosytem · combi-
natorics · Public key cryptosystem.

1 Introduction

We propose a public key cryptosystem called IPCC(Improved Perfect Code
Cryptosystem) that is secure against attacks using quantum computers. The
security of IPCC is based on the hardness of finding the Perfect Dominating
Set(PDS) in a 3-regular graph [2]. The problem of determining whether a graph
has PDS is an NP-complete problem [4] and finding the PDS in the graph con-
taining this is also believed to be an NP-complete problem but not proved yet. A

⋆ This work is submitted to ‘Korean Post-Quantum Cryptography Competition’
(www.kpqc.or.kr).

2 J. Ryu et al.

cryptosystem based on this problem has first been described in 1993 by Koblitz
and Fellows under the name Perfect Code Cryptosystems [1]. The public key
of Perfect Code Cryptosystems is a 3-regular graph that hides the PDS, and
the private key is a function called PDF that maps elements of the PDS to 1
and the remaining vertices to 0. This cryptography system could be used as
post-quantum cryptography, since finding PDFs seems to be an NP-complete
problem [5].

In this proposal, we introduce the design rationale of the improved crypto-
graphic system first. Then, the security of the algorithm with proposing param-
eter set is analyzed against dedicated attacks. Also, implementation techniques
and experimental results are discussed.

1.1 Design rationale

Perfect Code Cryptosystem has a problem in that the level of security is greatly
decreased by a plaintext recovery attack among known attack techniques for
cryptosystems. Adjusting the security parameters to solve this problem makes
the efficiency of the cryptographic system worse. In the existing PCC, it is very
difficult to achieve an appropriate balance between security and efficiency.

The design of IPCC is based on the additional difficulty of polynomial fac-
torization to alleviate this. The key recovery attack depends on the size n of the
graph, and the plaintext recovery attack depends on the maximum order k of
the ciphertext polynomials in Perfect Code Cryptosystem.

Since the encryption speed of a cryptographic system is highly dependent on
k, we came up with a way to build a high-order polynomial with polynomials
of low degree. By multiplying and adding the low-order polynomials to generate
a high-order polynomial, it is possible to encrypt message at high speed and
increase the security against plaintext recovery attacks. Given a ciphertext, an
adversary cannot attack each polynomial separately, unless the ciphertext poly-
nomial is factored into low-order polynomials. Since polynomial factorization is
a hard problem, we can enhance the security in this way. IPCC does not modify
the key generation and decryption designs of the existing Perfect Code Cryp-
tosystems, which were already efficient enough, but improves the encryption
process so that PCC could be practical.

1.2 Advantages and limitations

The IPCC has the advantage of very fast key generation and decryption speed,
though encryption speed is relatively slow. In addition, it has a distinctive prop-
erty based on a new problem that is different from the encryption schemes that
have been proposed in the post-quantum cryptography standardization process
hosted by NIST. This encryption system has limitations in that the size of the
memory used in the encryption process and the size of the ciphertext are ex-
tremely large. However, it is expected to be more useful than other PQCs for
one-way functions or whitebox encryption in environmemts without memory
limitations.

IPCC 3

2 Preliminaries

This section introduces the basic concept, definitions and notation for describing
out cryptosystem.

2.1 Definition

Definition 2.1 (k-regular graph). For some positive integer k, A graph G =
(V,E) such that deg(v) = k for ∀v ∈ V .

Fig. 1. example of 3-regular graph

Definition 2.2 (Perfect Dominating Set (PDS) [6]). A set of vertices A ⊆
V is called a perfect dominating set(PDS) of G if for every vertex v ∈ V , N [v]
contains exactly one element of A.

Fig. 2. example of Perfect Dominating Set

Fig. 3. explain for example of Perfect Dominating Set

4 J. Ryu et al.

Definition 2.3 (Perfect Dominating Function (PDF) [3]). Let f : V →
{0, 1} be a function which assigns to each vertex of a graph G an element of the
set {0, 1}. f is a perfect dominating function(PDF) if for every vertex v ∈ V ,∑

u∈N [v]

f(u) = 1.

Fig. 4. example of Perfect Dominating Function

2.2 Algorithm of PDF cryptosystems

This subsection describes the algorithm of the existing PDF cryptosystem [5].

Algorithm 1 Key generation in PDF-cryptography

Input: The security parameters (n0, k) and modulus p

Output: A pair of keys (pk, sk)

Step 1: Divide a set V into 4 subsets which are called A,B,C,and D such

that |A| = |B| = |C| = |D| = n0

Step 2: Randomly create six one-to-one correspondences between the sets and

connect related vertices each. Then the resulting graph G = (V,E) with a

PDS is generated

Step 3: WLOG set A is used as PDS, and assign a value to each vertex v ∈ V

from PDF mapping f : V → {0, 1} by

f(v) =

1, if v ∈ A,

0, otherwise.

Step 4: pk ← graph G = (V,E) and sk ← PDFf

Step 5: return pk, sk

IPCC 5

Algorithm 2 Encryption in PDF-cryptography

Input: public key pk(G = (V,E)), message m ∈ Zp, degree of polynomial k,

and prime p

Output: ciphertext ct

Step 1: Choose an arbitrary subset I of P(V).

I = {S1, S2, ..., St} for som positive integer t

such that for all S ∈ I, |S| ≤ k.

Step 2: Assign an integer cS to each set in I such that∑
S∈I

cS = m (mod p).

We denote this integer set C by

C = {cS1 , cS2 , ..., cSt} such that
∑

S∈I cS = m (mod p).

Step 3: Form the following polynomial over H = Z/pZ
h(x1, x2, ..., xn) =

∑
S∈I cS

∏
u∈S

∑
v∈N [u] xv ∈ H[{xv}].

Step 4: Expand a polynomial h, replace all higher powers of a variable by its

first power, and delete any monomial in which two variables occur that

correspond to vertices whose distance from one to another in the graph G

is ≤ 2. Consequently, ct is obtained as a simplified form of h.

Step 5: return ct

Fig. 5. example of reduction process in Step 4

Algorithm 3 Decryption in PDF-cryptography

Input: Private key sk(PDFf), ciphertext ct ∈ H[{xv}], and prime p

Output: message m

Step 1: Evaluate the polynomial h = ct using the private key sk

m← h(f(x1), f(x2), ..., f(xn)).

Step 2: return m

6 J. Ryu et al.

3 Specification

This section introduces the notation, definition, and algorithm used to describe
IPCC.

3.1 Notation

This subsection introduces the definitions of symbols.

Table 1: definitions of Symbols

symbol definition
$← a

$←A : Select one of the elements of set A randomly
(i.e., a ∈ A)

$←
i

A
$←
i
B : Select set A with size i among subsets of set

B randomly (i.e., A ⊆ B)
$↔ A

$↔ B : Generate a random one-to-one correspondence
between two sets A and B where A,B have equal size

P ∗(S) The power set (all subsets) of the set S excluding the
empty set i.e., P ∗(S) = {A : A ⊆ S} \ ϕ

N [v] For a vertex v ∈ V of a graph G = (V,E), a set having
adjacent vertices of v and itself

G = (V,E) A graph G consisting of a set of vertices V and a set of
edges E(⊆ V × V)

n Security parameter. The number of vertices in the
graph, i.e., the size of the vertex set. All 3-regular
graphs satisfy n = 4× n0 for some integer n0

k Security parameter. Maximum order of ciphertext. i.e.,
degree of the ciphertext polynomial

p Security parameter. Determine the range of message m
to be encrypted, m ∈ {0, 1, 2, ..., p− 1}.

xv Variable assigned to vertex v(∈ V)

PDF (G) A private key function that maps the PDS of the 3-
regular graph G to 1 and the remaining vertices to 0

Gen(n1, n2, ...) A key generation function that generates a public key
graph Gi = (Vi, Ei) with |Vi| = ni and a private
key PDF corresponding to G1, G2, ... for i = 1, 2, ...
(PDF,G1, G2, ...) ← Gen(n1, n2, ...) and PDS =
PDS1||PDS2||...

G family of graphs that generated by function Gen

IPCC 7

m The message to encrypt. Based on the implementation
of this proposal, a message is a fixed-length block of
32-bit.

SubEnc(m, k,G) A function that encrypts a messagem into a polynomial
fk
G of maximum degree k using the public key graph
G = (V,E)

fk
G ← SubEnc(m, k,G)

F (fk1

G1
, fk2

G2
, ...) A function that combines polynomials fk1

G1
, fk2

G2
, ... gen-

erated by the function SubEnc to form polynomial F k
G

with maximum order k

F k
G ← F(f

k1

G1
, fk2

G2
, ...)

Fk family of multivariate mixing functions. A set of mul-
tivariate polynomials with a maximum degree k gener-
ated using an invatiant polynomial as a variable (inde-
terminate)

Enc(m, k,G1, G2, ...) A function that encrypts message m into ciphertext
polynomial ct with maximum degree k using public key
graphs G1, G2, ...

ct← Enc(m, k,G1, G2, ...) = F (fk1

G1
, fk2

G2
, ...)

Dec(ct, PDS) A function that decrypts the ciphertext ct into message
m using the private key PDS

m← Dec(ct, PDS)

3.2 Specification of IPCC

Here, we describe the details of IPCC algorithm. Key generation, encryption, and
decryption algorithms are described in each subsection; encryption algorithms
are divided into sub-encryption algorithms and a newly devised encryption al-
gorithm that generates a ciphertext by using the sub-encryption algorithm.

The modified algorithm used in the implementation to speed up is described
in Section 4.3.

Specification of key generation function

Algorithm 4 Key generation function Gen

Input: the number of vertices n1, n2, . . . for each graph

8 J. Ryu et al.

Output: public key pk, private key sk

Step 1: For i = 0, 1, 2, . . . , allocate space for the vertex set Vi and the edge set

Ei of the graph Gi

V1 ← {1, 2, . . . , n1}, E1 ← ϕ

V2 ← {1, 2, . . . , n2}, E2 ← ϕ

· · · ,
Step 2: Divide each vertex set Vi into 4 subsets which are called Di1, Di2, Di3

and Di4 such that |Di1| = |Di2| = |Di3| = |Di4| = ni/4

Di1
$←

ni/4
Vi

Di2
$←

ni/4
Vi −Di1

Di3
$←

ni/4
Vi −Di1 −Di2

Di4 ← Vi −Di1 −Di2 −Di3

Step 3: Give a random one-to-one correspondence between subsets

Di1, Di2, Di3 and Di4, and connect vertices according to this relationship

to create edges

E ← {Di1
$↔ Di2} ∪ E, E ← {Di1

$↔ Di3} ∪ E,

E ← {Di1
$↔ Di4} ∪ E, E ← {Di2

$↔ Di3} ∪ E,

E ← {Di2
$↔ Di4} ∪ E, E ← {Di3

$↔ Di4} ∪ E,

Step 4: Create a PDS set by randomly choosing one of the subsets

Di1, Di2, Di3 or Di4

for i = 1, 2, . . . do

j
$← {1, 2, 3, 4}

PDSi ← Dij

PDS ← PDSi ∪ PDS

end for

i.e., PDS = PDS1 ∥ PDS2 ∥ · · ·
Step 5: Define each pair (Vi, Ei) as graph Gi

G1 ← (V1, E1), G2 ← (V2, E2), · · ·
Step 6: Generate private key function PDF using PDS

∀v ∈ V, PDF (v) = xv =

1, if v ∈ PDS,

0, otherwise.

Step 7: Use graph G1 = (V1, E1), G2 = (V2, E2), · · · as public key and PDF as

private key

pk ← G = {G1, G2,... }

IPCC 9

sk ← PDF

Step 8: return pk, sk

Specification of encryption function

Algorithm 5 Sub-encryption function SubEnc

Input: message m, maximum degree k, graph G = (V,E)

Output: polynomial fk
G

Step 1: Randomly choose one of the subsets of P ∗(Vi) to satisfy the following

condition

I
$← P ∗(Vi) such that ∀S ∈ I, |S| ≤ k

Step 2: Assign an integer ci to each set in I as follows. At this time, the sum

of the ci should be the message m

for i = 1 to |I| − 1 do

ci
$← Zp

end for

c|I| = m−
∑|I|−1

i=1 ci(mod p)

Step 3: Form the following polynomial

f(Xv1, Xv2, ...) =
∑|I|−1

i=1 ci
∏

u∈Ii

∑
u∈N[u]

xu

Step 4: Expand polynomial f , then replace all higher powers of a variable by

its first power and delete a term consisting of a product of variables

corresponding to a vertices with a distance equal to or less than 2

Step 5: f is an invariant polynomial in which each variable in the polynomial

corresponds to the vertex of G and the highest degree is k, denoted as fk
G

Step 6: return fk
G

Algorithm 6 Encryption function Enc

Input: message m, maximum degree k, public key graph set G = {G1, G2, · · · }
Output: ciphertext ct

Step 1: Select F to combine polynomials such that the maximum order is k

F
$← Fk

Step 2: For F , distribute message m to satisfy the following condition

m = F (m1,m2, ...)

Step 3: For each mi, create a polynomial fki

Gi
with maximum degree ki using

Gi

i.e., fki

Gi
← SubEnc(mi, ki, Gi)

10 J. Ryu et al.

Step 4: By combining the polynomial fki

Gi
according to the form of F ,

generate ciphertext F k
G(xv1 , xv2 , ...) with maximum degree k and the

vertices in the ciphertext belong to G1, G2 or others

ct← F k
G(xv1 , xv2 , ...) = F (fk1

G1
, fk2

G2
, ...)

Step 5: return ct

Specification of decryption function

Algorithm 7 Decryption function Dec

Input: ciphertext ct, private function PDF

Output: message m

Step 1: Put PDF (vi) into variable xvi of the polynomial ciphertext

ct = F k
G(xv1,xv2 ,···)

m← ct(PDF (v1), PDF (v2), · · ·)
Step 2: return m

example of IPCC

We show an example of IPCC where n1 = 200, n2 = 200, k = 2, p = 11. The
sets of vertices are V1 = {v1, v2, ..., v8} and V2 = {v9, v10, ..., v20}.

□ Key Generation

First, receiver Bob generates two graphs, G1 and G2, in which the sizes of vertex
set are n1and n2, respectively, as shown in Figure 6. The process of generating
graph G1 is shown in Figure 6, 7.

Fig. 6. generate key pair (pk, sk)

IPCC 11

Fig. 7. public key graph pk

Then generates PDF to use as a secret key by combining each PDS of graphs
G1 and G2 as following.

PDF (v) = xv =

{
1, if v ∈ PDS = {v1, v8, v18, v19, v20},
0, otherwise.

Bob saves the PDF and sends the public key graphs G1 and G2 as shown in
Figure 8, to the sender.

Fig. 8. public key graph pk

□ Encryption

After receiving the public key, the sender Alice prepares a message m to be

12 J. Ryu et al.

encrypted. When a message is prepared in the pre-shared message space Zp, F
from F is randomly selected for encryption.

m = 1(mod 11)
F = f1

G1
f1
G2

+ f2
G1

+ f2
G2
← F

Next, she distributes the message according to the form of F .

m = m1m2 +m3 +m4 = 5 · 6 + 7 + 8 = 1 mod 11

Then, with each mi as input, subEnc is performed according to fi.

– f1
G1

= SubEnc(m1 = 5, k = 1, G1)

|I| = 1, I = {v2}
$←
1
P ∗(G1), c{v2} = 5 mod 11

f1
G1

= c{v2}
∑

v∈N [v2]
xv = 5(xv1 + xv2 + xv3 + xv7)

– f1
G2

= SubEnc(m2 = 6, k = 1, G2)

|I| = 1, I = {v11}
$←
1
P ∗(G2), c{v11} = 6 mod 11

f1
G2

= c{v11}
∑

v∈N [v11]
xv = 6(xv10 + xv11 + xv12 + xv19)

– f2
G1

= SubEnc(m3 = 7, k = 2, G1)

|I| = 1, I = {v4, v5}
$←
1
P ∗(G1), c{v4,v5} = 7 mod 11

f2
G1

= c{v4,v5}
∏
u∈I

∑
v∈N [u]

xv

= 7(xv1 + xv3 + xv4 + xv5)(xv4 + xv5 + xv6 + xv8)

= 7(xv1xv4 + xv1xv5 + xv1xv6 + xv1xv8 + xv3xv4 + xv3xv5 + xv3xv6 + xv3xv8

+ xv4xv4 + xv4xv5 + xv4xv6 + xv4xv8 + xv5xv4 + xv5xv5 + xv5xv6 + xv5xv8)

= 7(xv1xv8 + xv3xv6 + xv4 + xv5)

– f2
G2

= SubEnc(m4 = 8, k = 2, G2)

|I| = 1, I = {v16, v20}
$←
1
P ∗(G2), c{v16,v20} = 8 mod 11

f2
G2

= c{v16,v20}
∏
u∈I

∑
v∈N [u]

xv

= 8(xv15 + xv16 + xv17 + xv19)(xv13 + xv14 + xv15 + xv20)

= 8(xv15xv13 + xv15xv14 + xv15xv15 + xv15xv20 + xv16xv13 + xv16xv14 + xv16xv15

+ xv16xv20 + xv17xv13 + xv17xv14 + xv17xv15 + xv17xv20 + xv19xv13

+ xv19xv14 + xv19xv15 + xv19xv20)

= 8(xv15 + xv16xv13 + xv17xv13 + xv17xv14 + xv17xv20 + xv19xv13 + xv19xv14 + xv19xv20)

IPCC 13

Finally, the ciphertext ct is generated by combining the polynomial fi ac-
cording to F .

ct = F = f1
G1

f1
G2

+ f2
G1

+ f2
G2

= 5(xv1
+ xv2 + xv3 + xv7)6(xv10

+ xv11
+ xv12 + xv19)

+ 7(xv1xv8 + xv3xv6
+ xv4 + xv5) + 8(xv15 + xv16xv13 + xv17xv13

+ xv17xv14 + xv17xv20 + xv19xv13 + xv19xv14 + xv19xv20).

Alice sends the generated ciphertext ct to Bob.

□ Decryption

Bob obtains the message by substituting the PDF into the ciphertext.

m = ct(PDF)

= 0 + 0 + 0 + 8 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 7

+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 8

= 1 mod 11.

3.3 Parameter sets

The parameter set selected to satisfy 128-bit safety is as follows. The security
strength that is satisfied when the suggested parameters are used has 158-bit
security for key recovery attack and 162-bit security for plaintext recovery attack.
However, the parameters used in the version implemented so far are as shown
in [Table 3], and we plan to optimize them so that the proposed parameters can
be used in the future.

Table 2. The parameter set satisfied 128-bit security

p #graph n per graph k per subpolynomial |I| per graph
65521 (216 − 15) 2 200 4 5

Table 3. The parameter set satisfied 80-bit security

p #graph n per graph k of subpolynomial |I| per graph
65521 (216 − 15) 2 200 2 / 3 3

p : public parameters. A prime number defining the message space Zp; not
only the message, but also an arbitrary coefficient cIi is defined in the
message space.

14 J. Ryu et al.

n : public parameters. The size of the set of vertices V in graph G. The vertex
set size of the 3-regular graph is divisible by 4, so n = 4 ∗ n0 for any
integer n0. And the public key is a set of edges of the graph; the number
of the edge set of the 3-regular graph is 6 ∗ n0, and each edge has two
vertices. According to the above parameter set, the size of the public key
is 2 ∗ 2 ∗ 6 ∗ n0 = 1200 when using two graphs with ni = 200.

k : public parameters. Each ki can be adjusted such that the sum of the
maximum degrees of the subpolynomials generated with the maximum
degree of the ciphertext is k. For example, if two graphs are used when k =
4, the degree of the subpolynomial generated by each graph can be selected
from among (1, 3), (2, 2), and (3, 1). In the case of the above parameters,
the maximum degree of the ciphertext is 8 since the maximum degree of
the subpolynomials generated by each graph is 4.

|I| : secret parameters. The size of the P ∗(V) subset I selected to generate
the subpolynomial. As the size of I increases and the number of polyno-
mial terms increases, the reduction occurence is also increases, then the
coefficient ci corresponding to Ii(∈ I) is spread evenly and ciphertext fac-
toring becomes more difficult. On the other hand, when |I| increases, the
encryption speed becomes very slow and the size of the ciphertext tends to
increase rapidly. Therefore, it is necessary to select parameters considering
efficiency. |I| suggested above is also a value selected considering the ratio
of the reducted term and the encryption speed.

The value of each parameter were determined by analyzing the results of the
graph below.

Fig. 9. Reduction rate

[Figure 9] shows the ratio of terms reduced according to |I| and the maximum
degree of a polynomial made with a graph where n is 200. The larger the re-
duction ratio, the lower the probability of knowing the variables configured for
encryption, and the higher the probability of spreading the coefficients contain-
ing the information of the message. In the case of k = 4, the rate of increase of
the reduction ratio is slower than the rate of increase of the number of terms, and

IPCC 15

thus the form is shown in [Figure]. Nevertheless, the parameter set was decided
the maximum degree to 4 because the reduction ratio is higher than when k = 2
and it generates terms of various degrees. And also, in future research, we plan
to expand the parameter set in the direction that |I| increases when k = 2.

4 Performance analysis

It is enhanced by some improvements of preceding implementations of Perfect
Code Cryptosystems encryption schemes[3]. The currently implemented IPCC
is focused on increasing the operation speed. The main difference is that the
dynamic array implementation is converted to a static array type for fast op-
eration. And in some schemes, a table using lexical ordering is used for vertex
operation.
Section 4.3 describes the algorithm that applies Table to the algorithm of Section
3.2. Although the operation time was dramatically reduced through this process,
the size of the memory used during the operation increased significantly.

4.1 Description of platform

All benchmarks were obtained on one core of an Intel Core i7-9700K CPU
@3.60HZ processor. The benchmarking PC has 16GB of RAM, and compiled
with gcc version 8.3.0. All results reported are the median of the results of 10
000 executions of the respective measurements. It has not been currently opti-
mized for memory usage allocated during the measurement and will be optimized
for the stack memory in the future.

4.2 Performance of reference implementation

* 1round performance goals (PC environment, 80-bit security)

Table 4. Performance goals (PC environment, 80-bit security)

key size cipher size keygen time enc time dec time

pk = 600-byte, sk = 150-byte ≤ 1MB ≤ 0.1ms ≤ 500ms ≤ 1ms

* Actual performance (PC environment, satisfied 80-bit security)

Table 5. Performance result (PC environment, 80-bit security)

key size cipher size keygen time enc time dec time

pk = 4800-byte, sk = 400-byte 9.2× 104-byte 1.06ms 0.35ms 0.33ms

16 J. Ryu et al.

IPCC generates 4800 bytes of public key, 400 bytes of private key, and 9.2× 104

bytes of ciphertext when using the parameter that provides 109-bit security in
Section 3.3 [Table 3]. At this time, the average key generation speed is 1.06ms,
the average encryption speed is 0.35ms, and the average decryption speed is
0.33ms.
Comparing the performance of IPCC with other cryptographic algorithms is
shown in the [Figure 10].

Fig. 10. Comparison with NIST PQC 3round candidate algorithms [7]

The results of comparing the performance of IPCC with the performance of the
existing Perfect Code Cryptosystems are shown in the following [Table]. This is
the result of measuring the speed of the cryptographic system by inputting |I|
to generate a ciphertext of a similar size when the number of graph vertices is
200 and the maximum degree of the ciphertext is 5 [5].

Table 6. Performance comparing (PC environment, 80-bit security)

key size (byte) number of terms keygen time enc time dec time

PDF pk = 4800, sk = 400 24,352 1ms 84781ms 4ms

IPCC pk = 4800, sk = 400 25,555 0.028ms 2.411ms 3.363ms

4.3 Implemetation technic for performance

This algorithm utilizes a table using lexical ordering (so that we can calculate
by substituting the vertex number to a bit digit) on the sub-encryption and
decryption functions to improve implementation speed.

Algorithm 8 Sub-encryption function SubEnc with table

Input: message m, max degree k, graph G = (V,E)

Output: polynomial fk
G

IPCC 17

Step 1: Same as Alogrithm2 upto step 3

Step 2: For each vertex in graph G, create a table by defining the list of

neighboring vertices as follows

for i = 1 to |V | do
for i = vj to N [vi] do

Table(vi)← 2vj−2

end for

end for

Step 3: After expanding the invariant polynomial f(xv1 , xv2 , ...), set empty

term list T represented by lexical ordering and calculate each term as

follows

for i = 1 to |♯terms(f)| do
for i = 1 to |termi| do

for i = 1 to |j − 1| do
if Table(vij) & Table(vjk) > 0 then

remove the termi

goto next i

end if

end for

Ti ← Ti|2vij−1

end for

end for

Step 4: Convert the value of undeleted Ti into polynomial form as follows

for i = 1 to |Ti| do
for i = 1 to tablecolsize do

if {Ti ≫ (j − 1)}&1 = 1 then

termi ← termi ∗ vj
end if

end for

termi ← termi ∗ coefficient(termi)

end for

Step 5: f is an invariant polynomial fk
G in which the variable in the

polynomial corresponds to the vertex of G and has the highest degree k

fk
G ← f =

∑
termi

Step 6: return fk
G

The if statement of step 5 of [Algorithm 5] is a process of checking whether two
or mode vertices that are neighboring are multiplied. If the i does not go to the
next(i+ 1) by the if statement, vertex multiplication is performed through OR

18 J. Ryu et al.

operation. This ensures that the order does not increase when the same vertex is
multiplied. Furthermore, step 4 can be pre-computed after receiving the public
key before proceeding with encryption.

Algorithm 9 Decryption function Dec with table

Input: cipher ct, private function PDF

Output: message m

Step 1: For each variable xvi of the PDS element, it is converted as follows

for i = 1 to |PDS| do
yvi ← 2vi−1

end for

Step 2: Generate LoPDS by XORing all yvi
for i = 1 to |PDS| do

LoPDS ← yvi1
⊕

yvi2
⊕

...

end for

Step 3: Convert all terms Tj of the ciphertext as follows

for j = 1 to |♯terms(ct)| do
for k = 1 to dim(Tj) do

yvjk ← 2vjk−1

end for

Tj ← yvj1
⊕

yvj2
⊕

...

end for

Step 4: If the result of AND operation with Tj and LoPDS is Tj , the

coefficient of the Tj term is added to pt; otherwise, check the next term

for j = 1 to |♯terms(ct)| do
if Tj & LoPDS = Tj then

pt← pt+ coefficient(Tj)

end if

end for

Step 5: Return message m, which is the decryption result pt

m← pt

Step 6: return m

Step 4 of [Algorithm 6] is a procedure of comparing the two values of the term
and the PDS converted by lexical ordering at once, rather than comparing the
vertices corresponding to each variable of the term with the PDS elements one
by one.

IPCC 19

5 Security

This section describes the security strength according to the complexity of ex-
haustive key search on IPCC, then explains the known attack technique and the
security decreasing. And the rationale for determining the security parameters
is also explained.

5.1 Security definition

IPCC is the PKE algorithm having configured the parameter set to satisfy 80-
bit security. The main parameters that determine the security strength of this
cryptosystem are the size n of each graph and the maximum order k of the
cryptogram. In addition, the size of set I(the number of ci) used to generate the
ciphertext affects the attack on the cryptosystem.

5.2 Security strength categories

The complexity of key recovery attack on IPCC is O
(|V1|
|V1|/4

)
+ O

(|V2|
|V2|/4

)
+ ... =

O
(|Vi|
|Vi|/4

)
(|Vi| ≥ |Vj | for ∀j) where G = {G1, G2, ...}. For IPCC using multiple

graphs, the complexity of key recovery attack for the largest graph is the com-
plexity of exhaustive key search because each graphs are public and key recovery
attacks can be performed on each. So, when the size of the set of graph vertices
is 200, the complexity of key recovery attack is O(2158). [Table 7] shows the
security level presented by NIST [8]. The strength of the cryptographic algo-
rithm according to the size of the security parameters proposed in this proposal
corresponds to security level 1.

Table 7. strength of the cryptographic algorithm

Level Security Description

1 At least as hard to break as AES128 (exhaustive key search)

2 At least as hard to break as SHA256 (collision search)

3 At least as hard to break as AES192 (exhaustive key search)

4 At least as hard to break as SHA384 (collision search)

5 At least as hard to break as AES256 (exhaustive key search)

5.3 Cost of plaintext recovery attacks

The goal of this attack is to recover the plaintext corresponding to the ciphertext.
In a situation where the (IS , cS) pair is unknown, the attacker generates c̃t
including terms in all cases and applies Gaussian-Jordan elimination to ct = c̃t

20 J. Ryu et al.

to obtain m = m̃. The attack complexity is O(t3) when the number of terms

in the arbitrary ciphertext generated by the attacker is t =
∑k

i=1

(
n
k

)
. That is,

along with the size of the public key, the maximum degree k of the ciphertext
has a great influence on complexity.

algorithm of plaintext recovery attacks

Algorithm 10 Plaintext recovery attack

Input: ciphertext ct, graph G = (V,E)

Output: message m

Step 1: Set an adversary’s set Ĩ as following

Ĩ ⊆ P (V) such that for all S ∈ Ĩ , |S| ≤ k and |Ĩ| =
∑k

j=1

(
n
k

)
Step 2: The adversary leaves the set C selected by the sender as an unknown

set C̃

C̃ =
{
c̃1, c̃2, ..., c̃|Ĩ|

}
Step 3: Generate a polynomial c̃t in the same way as the Algorithm2

c̃t = f̃(x1, x2, ..., xn) =
∑|̃I|−1

i=1 c̃i
∏

u∈Ĩi

∑
u∈N [u] xu

Step 4: From the condition c̃t equals to the given ciphertext ct as a

polynomial, we have the system of linear equations with unknowns {c̃s} by
comparing their coefficients

Step 5: Applying Gaussian Jordan Elimination to the linear equations c̃t = ct;

if the result of adding each column vector of the reduced row echelon form

matrix on Zp is
{
r1, r2, ..., r|Ĩ|, r|Ĩ|+1

}
, then

{
r1, r2, ..., r|Ĩ|, r|Ĩ|+1

}
=

{1, 1, ..., 1, m̃}
Step 6: Return m̃ as m

Step 7: Return m

example of plaintext recovery attacks We show an example of plaintext
recovery attack for Perfect Code Cryptosystem where n = 8, k = 1, p = 11. The
sets of vertices are V = v1, v2, ..., v8. The receiver Bob first generates a key pair
and publishes the graph [Figure 11] with the public key.

IPCC 21

Fig. 11. public key graph pk

The sender Alice generated the ciphertext ct to deliver the message m = 5.
At this time, the I selected by Alice is I = {v1, v6, v7}, and coefficients set is
C = {cv1 = 7, cv6 = 3, cv7 = 6}.
Assume that Alice is sending a ciphertext to the recipient Bob, and the attacker
eavesdrops on it. The ciphertext that the attacker obtained is ct = 10xv1+2xv2+
7xv4 + 3xv5 + 5xv6 + 9xv7 + 6xv8 .

First, the attacker constructs a set Ĩ so that all possible cases where k = 1.

Ĩ = {v1, v2, v3, v4, v5, v6, v7, v8}

And let the integer corresponding to each element of Ĩ be the unknown c̃i.

C̃ = {c̃v1 , c̃v2 , c̃v3 , c̃v4 , c̃v5 , c̃v6 , c̃v7 , c̃v8}

Then, an attacker generates an arbitrary ciphertext ct for attacky referring to
the public key.

c̃t = c̃tv1(xv1 + xv2 + xv4 + xv6) + c̃tv2(xv1 + xv2 + xv3 + xv7)

+c̃tv3(xv2 + xv3 + xv4 + xv8) + c̃tv4(xv1 + xv3 + xv4
+ xv5)

+ c̃tv5(xv4 + xv5 + xv6 + xv8) + c̃tv6(xv1 + xv5 + xv6 + xv7)
+ c̃tv7(xv2 + xv6 + xv7 + xv8) + c̃tv8(xv3 + xv6 + xv7 + xv8)

= xv1(c̃tv1 + c̃tv2 + c̃tv4 + c̃tv6) + xv2(c̃tv1 + c̃tv2 + c̃tv3 + c̃tv7)
+ xv3(c̃tv2 + c̃tv3 + c̃tv4 + c̃tv8) + xv4(c̃tv1 + c̃tv3 + c̃tv4 + c̃tv5)
+ xv5(c̃tv4 + c̃tv5 + c̃tv6 + c̃tv8) + xv6(c̃tv1 + c̃tv5 + c̃tv6 + c̃tv7)
+ xv7(c̃tv2 + c̃tv6 + c̃tv7 + c̃tv8) + xv8(c̃tv3 + c̃tv6 + c̃tv7 + c̃tv8)

Knowing ct = 10xv1 + 2xv2 + 7xv4 + 3xv5
+ 5xv6

+ 9xv7 + 6xv8 , an attacker can
generate a system of equations by comparing the coefficients of each term. As
shown in [Figure 12] below, Gauss-Jordan elimination is applied by expressing
the system of c̃t = ct equations as a matrix.

22 J. Ryu et al.

Fig. 12. apply the Gauss-Jordan elimination

The message m can be recovered by adding the column vector of the matrix cal-
culated in the Reduced Row Echelon Form over Zp. An attacker cannot compute

the unique C̃, but can obtain the message.

Fig. 13. Recover the message on Zp

Algorithm 11 Plaintext recovery attack against IPCC

Input: ciphertext ct, private function PDF

Output: message m

Step 1: Check whether ct can be decomposed into F̃

Step 2: Execute Algorithm7 for each f̃i of F̃

Step 3: Compute m̃ as m by composing m̃j calculated for each f̃j into F̃

Step 4: return m

IPCC 23

Expansion of plaintext recovery attack to IPCC In the case of IPCC, it is
not necessary for the encrypting user to randomly selectF and not to disclose it.
Therefore, if each subpolynomial cannot be attacked by factoring the ciphertext,
the security against plaintext recovery attacks is maintained.
For example, suppose that Alice uses the graphsG1 = (V1, E1) andG2 = (V2, E2)
with |V1| = |V2| = 200 to generate a ciphertext with a maximum degree of 2. The
F chosen by Alice to make the ciphertext is f2

G1
+ f1

G1
f1
G2

+ f2
G2

, and |I| = 5for
each polynomial. Then, the time required for encryption is 0.186 ms, and the
cipher text consists of 531 terms. If Alice uses a graph with |V | = 400 to encrypt
a ciphertext with a maximum degree of 2 and |I| = 35(= 5+5∗5+5), a ciphertext
consisting of 345 terms is obtained by consuming 4.3463ms of encryption time.
Attacker Eve can scan the ciphertext and separate the terms generated using
only one graph, G1 or G2, and both graphs. Then, for ciphertext generation, the
number of selectable vertex sets is 200C1 +200 C2 from G1, 200C1 +200 C2 from
G2, and 200C1 ∗200 C1 when two graphs are used. However, it is the same as
the number of possible vertex combination when plaintext recovery is performed
where the maximum degree is 2 and graph size is 400. In both cases, the number
of terms in the random ciphertext that Eve needs to generate is 80200.
As the order increases, the difference in encryption speed increases when dividing
the two graphs, and the difference between the size of the generated ciphertext
and the number of random ciphertexts that an attacker must generate also in-
creases sharply. Therefore, with respect to the parameters proposed in Section
3.3, it can be expected that the IPCC will be safe against plaintext recovery
attacks. Above all, it is important not to affect the complexity of attack when
the attacker separates even a part of F . The goal is to generate F so that the
attacker’s factoring ability has no effect on the attack complexity.
Since the current implementation uses a selecting one of four list in F as a
secret, there is a possibility of being attacked with a computational ability sim-
ilar to that of a user who encrypts by operating each F directly, but in future
implementations, we plan to generate F be configured randomly.

Table 8. complexity according to k (n=400)

k size of c̃t 6 complexity

2 8.02× 104 49

3 1.06× 107 71

4 1.06× 109 90

5 8.42× 1010 109

6 5.56× 1012 127

7 3.13× 1014 145

8 1.54× 1016 162

If the proposed parameter set is followed, the number of vertices that can appear
in the ciphertext is 400 and the maximum degree is 8, so it has 162-bit safety

24 J. Ryu et al.

against plaintext recovery attacks. However, in this parameter setting, follows
the key recovery attack safety because the key recovery attack for each graph has
158-bit security, unlike generally following the security against plaintext recovery
attack since the complexity of a key recovery attack is greater than that of a
plaintext recovery attack.

6 Conclusion

In public key cryptography, Perfect Code Cryptosystems has not received much
attention due to its inefficiency in terms of speed and memory. However, the
IPCC proposes a way to improve encryption/decryption speed using multiple
graphs. Designing a cryptosystem based on combinatorics is not a mature tech-
nology. We expect that our proposal will be an initial step toward practical
cryptosystems based on an NP-problem in graph theory. In this paper, we try to
determine appropriate parameters such as the size of each graph, the number of
graphs, and the number of terms in ciphertext polynomial, the degree of polyno-
mials and so on. However, there is still room for improvement. In future studies,
we have to provide precise security analysis and optimal implementation.

IPCC 25

References

1. Fellows, M., Koblitz, N.: Kid krypto. pp. 371–389 (2021(1993))
2. Fellows, M.R., Koblitz, N.: Combinatorially based cryptography for children (and

adults). Congressus Numerantium pp. 9–9 (1994)
3. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of domination in graphs

(2013)
4. Kratochv́ıl, J.: Regular codes in regular graphs are difficult. Discrete Mathematics

133(1), 191–205 (1994)
5. Kwon, S., Kang, J.S., Yeom, Y.: Analysis of public-key cryptography using a 3-

regular graph with a perfect dominating set. pp. 1–6 (2021)
6. Livingston, M., Stout, Q.: Perfect dominating sets. Congressus Numerantium 79

(1997)
7. Moody, D.: The 2nd Round of the NIST PQC Standardization Process (2019)
8. NIST: Submission requirements and evaluation criteria for the post-quantum cryp-

tography standardization process (2016)
9. Yoon, S.: (1,-1, 0)-perfect minus dominating function and its application to the

public key cryptosystem (2001)

[9]

